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Il. NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis




Il. NeRF - Overview BrAln Lab. &
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Il. NeRF - Overview BrAIn Lab. &




II. NeRF - Process BrAln Lab. &
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ll. NeRF - Pixel Color Function BrAln Lab. &
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lll. 3D Gaussian splatting for real-time
radiance field rendering




l1l. 3DGS - Needs BrAln Lab. &
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I1l. 3DGS - Process BrAln Lab. &)

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M « SfM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i—20 > Iteration Count
while not converged do
V,I « SampleTrainingView() > Camera V and Image
I « Rasterize(M, S, C, A, V) > Alg. 2
L « Loss(L ) > Loss
M,S,C, A «— Adam(VL) > Backprop & Step Camera | ——
if IsRefinementlteration(i) then /' Projection \
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do % . - -0 |
if & < € or IsTooLarge(y, 3) then > Pruning etse T % Initialization | = l Tile Rasterizer Image
RemoveGaussian() . , , \ Adaptive
end if SiM Points 3D Gaussians Density Control ’ —» Operation Flow Gradient Flow
if VyL > 7 then > Densification
if ||S|| > 75 then > Over-reconstruction
SplitGaussian(y, %, ¢, )
else > Under-reconstruction
CloneGaussian(y, %, ¢, @)
end if
end if
end for
end if
i—i+1

end while




l1l. 3DGS - Process(Initialization) BrAln Lab. &

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M « SfM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i—20 > Iteration Count
while not converged do mean (SfM)
V,I « SampleTrainingView() > Camera V and Image
I « Rasterize(M, S, C, A, V) > Alg. 2
L « Loss(L ) > Loss
M,S,C, A« Adam(VL) > Backprop & Step covariance
if IsRefinementlteration(i) then T T
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do > =RSS'R
if @ < € or IsTooLarge(y, 2) then > Pruning
RemoveGaussian()
end if color (SH coefficients)
if VyL > 7 then > Densification
if ||S|| > 75 then > Over-reconstruction
SplitGaussian(y, %, ¢, )
else > Under-reconstruction : ~ : :
CloneGaussian(y, %, ¢, @) OpaCIty (O 1 SlngId)
end if
end if
end for
end if
i—i+1

end while




l1l. 3DGS - Process(Initialization) BrAln Lab. &

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M «— SfM Points > Positions SfM(Structure from Motion)
S,C, A « InitAttributes() > Covariances, Colors, Opacities
ie0 > Jteration Count
while not converged do
V,I « SampleTrainingView() > Camera V and Image
I « Rasterize(M, S, C, A, V) > Alg. 2
L « Loss(L ) > Loss
M,S,C, A« Adam(VL) > Backprop & Step

if IsRefinementlteration(i) then
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do
if @ < € or IsTooLarge(y, 2) then > Pruning
RemoveGaussian()
end if
if VyL > 7 then > Densification
if ||S|| > 75 then > Over-reconstruction
SplitGaussian(y, %, ¢, )
else > Under-reconstruction
CloneGaussian(y, %, ¢, @)
end if
end if
end for
end if

i—1i+1

end while




l1l. 3DGS - Process(Initialization) BrAln Lab. &

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M « SfM Points > Positions .
S,C, A « InitAttributes() > Covariances, Colors, Opacities COva rrance
i« 0 > [teration Count
while not converged do
V,I « SampleTrainingView() > Camera V and Image
I « Rasterize(M, S, C, A, V) > Alg. 2 — RS I S T RT
L « Loss(L ) > Loss
M, S, C, A «— Adam(VL) > Backprop & Step
if IsRefinementlteration(i) then
for all Gaussians (i, 3, ¢, ) in (M, $,C, A) do Cov( X, X)=FEl(X— E[X]))(X—E[X)]=EXX]HEX]|E[X]]
if @ < € or IsTooLarge(y, 2) then > Pruning
J omoveGaussiang Cov(X,.X;) Cov(X,.X,) - Cov(X,X,)
end i ) ) )
if V,L > 7, then > Densification > _ | Cov (XE'? X ) Cov (—XQT X ) - Cov (*'\2* X, )
; . Cov (X, X) = : . . .
if ||S|| > 75 then > Over-reconstruction : : . :
SplitGaussian(ss . ¢, a) Cov(X,.X,) Cov(X,,X,) - Cov(X,.X,)
else > Under-reconstruction B
CloneGaussian(y, %, ¢, @) ) . _ ) . ) . ]
end if Var(X,)  Cov(X,,X,) - Cov (_A X))
end if Cov(X,, X, ) Var(X,) . Cov(X,, X))
end for C."()'E.F(X, X)= . 2 : ’ . : 2
end if . \ L ’ ’
end Cov(X,,X,) Cov(X,.X,) - Var(X,)

end while




l1l. 3DGS - Process(Initialization) BrAln Lab. &

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M — SEM Points - Positions SH(Spherical Harmonics) coefficients
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i—20 > Iteration Count
while not converged do ‘
V,I « SampleTrainingView() > Camera V and Image & - 9
I « Rasterize(M, S, C, A, V) > Alg. 2 -
L « Loss(I,1) > Loss \‘3 -y
M, S, C, A «— Adam(VL) > Backprop & Step e@2C e
if IsRefinementlteration(i) then Twvil'wTV
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do WO = MY
. . - w W W W W
if @ < € or IsTooLarge(y, 2) then > Pruning
@ NV~ N Y
RemoveGaussian() WOeVP Y Ve owvetey
end if “ D, 4, = >, &, ¢
'.\l‘sﬂ'\‘ 4 : " .\‘..,\.\..\
if V,L > 7, then > Densification WYY weCw
if ||S|| > 75 then > Over-reconstruction LTSS TP N S S el L LT T T
SplitGaussian(y, %, ¢, ) et sl ol Tl T o o
. ) W) &8 ST G | _ A '/.‘-'l“'.-,w'_ ML T ‘
else > Under-reconstruction WO YSTTTe oo Ve w®WwW
CloneGaussian(i 3, .) vessEEEioLcsitesrwe
end if & = i i o o G
end if WeESOSEOTETvLVETETETCYew
end for
end if
i—i+1

end while




lll. 3DGS - Process(Projection)

BrAIn Lab.&5

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M « SfM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i—20 > [teration Count

while not converged do

V,I « SampleTrainingView() > Camera V and Image
I « Rasterize(M, S, C, A, V) > Alg. 2

L < Loss(I,1) > Loss
M,S,C, A« Adam(VL) > Backprop & Step
if IsRefinementlteration(i) then
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do
if @ < € or IsTooLarge(y, 2) then > Pruning
RemoveGaussian()
end if
if VyL > 7 then
if ||S|| > 75 then
SplitGaussian(y, %, ¢, )

> Densification
» Over-reconstruction

else > Under-reconstruction
CloneGaussian(y, %, ¢, @)
end if
end if
end for
end if
i—i+1

end while
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I1l. 3DGS - Process(Projection) BrAln Lab. &

Algorithm 1 Optimization and Densification
w, h: width and height of the training images

M « SfM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i—20 > Iteration Count
while not converged do AN A o
V,I « SampleTrainingView() > Camera V and Image
I « Rasterize(M, S, C, A, V) > Alg. 2
L < Loss(I,1) > Loss
M,S,C, A« Adam(VL) > Backprop & Step

if IsRefinementlteration(i) then
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do
if @ < € or IsTooLarge(y, 2) then > Pruning
RemoveGaussian()
end if
if VyL > 7 then > Densification
if ||S|| > 75 then > Over-reconstruction
SplitGaussian(y, %, ¢, )
else > Under-reconstruction
CloneGaussian(y, %, ¢, @)
end if
end if
end for
end if

i—1i+1

end while




l1l. 3DGS - Process(Optimization) BrAln Lab. &

Algorithm 1 Optimization and Densification

w, h: width and height of the training images L = (1 — A)Ll + /LLD—SSIM
M « SfM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities A =0.2
i—20 > Iteration Count
while not converged do B o 3 y
V,I « SampleTrainingView() > Camera V and Image SSIBI(X Y) — [E(X: YN ' [C(X: Y)] ’ [S(X: YH
[ «— Rasterize(M.S.C.A. V) > Alg. 2
L « Loss(L ) > Loss
M,S,C, A« Adam(VL) > Backprop & Step
if IsRefinementlteration(i) then
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do
if @ < € or IsTooLarge(y, %) then > Pruning Structural Similarity Index Measure
RemoveGaussian()
end if . & =
£ 9,15 5 then Sencifinti Luminance(®l &), Constrast(CHH]), Structure(+=x)
if ||S|| > 75 then > Over-reconstruction
SplitGaussian(y, %, ¢, )
else > Under-reconstruction
CloneGaussian(y, %, ¢, @)
end if
end if
end for Lp-ssim = (1 —SSIM) / 2
end if
i—i+1

end while




lll. 3DGS - Process(Adaptive Control of

| = I‘-I‘I‘-\

Algorithm 1 Optimization and Densification

w, h: width and height of the training images Grad ieﬂtjl' Lﬂ —I?— = |:|'|
M « StM Points > Positions
S,C, A « InitAttributes() > Covariances, Colors, Opacities
i« 0 > [teration Count g
while not converged do 5 g
V,I « SampleTrainingView() > Camera V and Image E g — —
I « Rasterize(M, S, C, A, V) > Alg. 2 & Continues
L « Loss(L ) > Loss
M.S.C, A < Adam(V]) > Backprop & Step Following the gradient of position
if IsRefinementlteration(i) then
for all Gaussians (1, %, ¢, @) in (M, S,C, A) do
if @ < € or IsTooLarge(y, 2) then > Pruning
RemoveGaussian()
end if g
if V,L > 7, then > Densification 5 Z
if ||S|| > 75 then > Over-reconstruction ° § Sl Optimization
SplitGaussian(y, 2, ¢, @) = Contlndes
else > Under-reconstruction
CloneGaussian(y, %, ¢, @) Sampling from the parent PDF + 1.6 scaling
end if
end if
end for
end if
i—i+1

end while




I1l. 3DGS — Result

Dataset Mip-NeRF360 Tanks&Temples ‘ Deep Blending

Method|Metric | SSIM' PSNR' LPIPS' Train FPS Mem | SSIM' PSNR' LPIPS!  Train FPS Mem | SSIM! PSNR! LPIPS' Train FPS  Mem
Plenoxels 0.626 23.08 0.463 25m49s 679 2.1GB 0.719 21.08 0.379 25mbs  13.0  2.3GB ‘ 0.795 23.06 0.510 27m49s 112 2.7GB
INGP-Base 0.671 25.30 0.371 5m37s 117 13MB 0.723 21.72 0.330 5m26s 17.1  13MB ‘ 0.797 23.62 0.423 6m3ls 326 13MB
INGP-Big 0.699 25.59 0.331 Tm30s 943 48MB 0.745 21.92 0.305 6m59s 144 48MB ‘ 0.817 24.96 0.390 8m 2.79  48MB
M-NeRF360 | 0.792" | 27.69" 0237  4s8h 006 86MB | 0759 2222 0257  48h 0.4 S86MB | 0901 2940 0245  48h 009 8.6MB
Ours-7K 0.770 25.60 0.279 6m25s 160 523MB 0.767 21.20 0.280 6mb5s 197  270MB | 0.875 27.78 0.317 4m35s 172  386MB
Ours-30K 0.815 27.21 0.214 41m33s 134 734MB 0.841 23.14 0.183 26m54s 154 411MB | 0.903 2941 0.243 36m2s 137 676MB




V. Recent Advances




IV. Recent Advances BrAln Lab. &

SIGGRAPH ICLR ICLR ECCV
2023 2023 2024 2024

3DGS Flow-matching LRM CityGaussian

NeRF DiT stable-diffusion3 LGM DiffSplat

ECCV ICCV ArXiv ECCV ICLR
2020 2023 2024 2024 2025




V.

Recent Advances(DiT)

Scalable Diffusion Models with Transformers

William Peebles”
UC Berkeley

Saining Xie
New York University

Figure 1: Diffusion models with transformer backbones achieve state-of-the-art image quality. We show selected sam-
ples from two of our class-conditional DiT-XL/2 models trained on ImageNet at 512x512 and 256 x 256 resolution.

Abstract

We explore a new class of diffusion models based on the
transformer architecture. We train latent diffusion models
of images, replacing the commonly-used U-Net backbone
with a transformer that operates on latent patches. We an-
alyze the scalability of our Diffusion Transformers (DiTs)
through the lens of forward pass complexity as measured by
Gflops. We find that DiTs with higher Gflops—through in-
creased transformer depth/width or increased number of in-
put tokens—consistently have lower FID. In addition to pos-
sessing good scalability properties, our largest DiT-XL/2
models outperform all prior diffusion models on the class-
conditional ImageNet 512512 and 256 x 256 benchmarks,
achieving a state-of-the-art FID of 2.27 on the latter.

1. Introduction

Machine learning is experiencing a renaissance pow-
ered by transformers. Over the past five years, neural
architectures for natural language processing [12, ¥], vi-
sion [!0] and several other domains have been subsumed
by transformers [60)]. Many classes of image-level gener-
ative models remain holdouts to the trend, though—while
transformers see widespread use in autoregressive mod-
els [13, 5, 6, 7], they have seen less adoption in other gen-
erative modeling frameworks. For example, diffusion mod-
els have been at the forefront of recent advances in image
generation [, 16]; yet, they all adopt a convolutional U-Net
architecture as the de-facto choice of backbone.

* Work done during an internship at Meta AL FAIR Team.
Code and project page available here.
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V. Recent Advances(Flow-matching)

FLOW MATCHING FOR GENERATIVE MODELING

Yaron Lipman'? Ricky T. Q. Chen' Heli Ben-Hamu® Maximilian Nickel' Matt Le!
"Meta Al (FAIR) 2Weizmann Institute of Science

ABSTRACT

We introduce a new paradigm for generative modeling built on Continuous
Normalizing Flows (CNFs), allowing us to train CNFs at unprecedented scale.
Specifically, we present the notion of Flow Matching (FM), a simulation-free
approach for training CNFs based on regressing vector fields of fixed conditional
probability paths. Flow Matching is compatible with a general family of Gaussian
probability paths for transforming between noise and data samples—which
subsumes existing diffusion paths as specific instances. Interestingly, we find
that employing FM with diffusion paths results in a more robust and stable
alternative for training diffusion models. Furthermore, Flow Matching opens
the door to training CNFs with other, non-diffusion probability paths. An
instance of particular interest is using Optimal Transport (OT) displacement
interpolation to define the conditional probability paths. These paths are more
efficient than diffusion paths, provide faster training and sampling, and result in
better generalization. Training CNFs using Flow Matching on ImageNet leads
to consistently better performance than alternative diffusion-based methods in
terms of both likelihood and sample quality. and allows fast and reliable sample
generation using off-the-shelf numerical ODE solvers.

1 INTRODUCTION

Deep generative models are a class of deep learning algorithms aimed at estimating and sampling
from an unknown data distribution. The recent influx of amazing advances in generative modeling,
e.g., for image generation Ramesh et al. (2022); Rombach et al. (2022), is mostly facilitated by
the scalable and relatively stable training of diffusion-based models Ho et al. (2020); Song et al
(2020b). However, the restriction to simple diffusion processes leads to a rather confined space of
sampling probability paths, resulting in very long training times and the need to adopt specialized
methods (e.g., S 1. (2020a); Zhang & Chen (2022)) for efficient sampling.

In this work we consider the general and deterministic framework of Continuous Normalizing
Flows (CNFs; Chen et al. (2018)). CNFs are capable of modeli

and are in particular known to encompass the prob- T
ability paths modeled by diffusion processes (Song
I, 2021). However, aside from diffusion that
can be trained efficiently via, e.g., denoising score
matching (Vincent, 2011), no scalable CNF train-
ing algorithms are known. Indeed, maximum like-
lihood training (e.g., Grathwohl et al. (2018)) re-
quire expensive numerical ODE simulations, while
existing simulation-free methods either involve in-
tractable integrals (Rozen et al., 2021) or biased gra-
dients (Ben-Hamu et al., 2022).

The goal of this work is to propose Flow Matching
(FM), an efficient simulation-free approach to train-
ing CNF models, allowing the adoption of general 7
probability paths to supervise CNF training. Impor- Y R

tantly, FM breaks the barriers for scalable CNF train- s -

ing beyond diffusion, and sidesteps the need to rea- Figure 1: Unconditional ImageNet-128 sam-
son about diffusion processes to directly work with ples of a CNF trained using Flow Matching
probability paths. with Optimal Transport probability paths.
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V. Recent Advances(Stable-diffusion 3)

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Patrick Esser ©  Sumith Kulal Andreas Blattmann Rahim Entezari Jonas Miiller Harry Saini Yam Levi
Dominik Lorenz Axel Sauer Frederic Boesel Dustin Podell Tim Dockhorn Zion English

Proceedings of the {1**

Rt Rombac 1. 7|& Diffusion models?| =2l MEZ2| 2K | 4
A

Abstract

Diffusion models create data from noise by invert-

ing the forward paths of data towards noise and
have emerged as a powerful generative modeling
technique for high-dimensional, perceptual data

such as images and videos. Rectified flow is a re-

cent generative model formulation that connects
data and noise in a straight line. Despite its better
theoretical properties and conceptual simplicity, it

is not yet decisively established as standard prac-
ng noise sam-
pling techniques for training rectified flow mod-

tice. In this work, we improve e

els by biasing them towards perceptually relevant

scales. Through a large-scale study. we demon-

"Equal contribution . <first.last> @stability.ai.

International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. High-resolution samples from our 8B rectified flow model. showcasing its capabilities in typography, precise prompt following

and spatial reasoning, attention to fine details, and high image quality across a wide variety of styles.

strate the superior performance of this approach
compared to established diffusion formulations

for high-resolution text-to-image synthesis. Ad-

ditionally, we present a novel transformer-based
architecture for text-to-image generation that uses

separate weights for the two modalities and en-

ables a bidirectional flow of information between

image and text tokens, improving text comprehen-
sion, typography. and human preference ratings.
We demonstrate that this architecture follows pre-
dictable scaling trends and correlates lower vali-

dation loss to improved text-to-image synthesis as

measured by various metrics and human evalua-
tions. Our largest models outperform state-of-the-

art models. Stability Al is considering making

experimental data, code, and model weights pub-

licly available.

iT (Multimodal diffusion Transformer)
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V. Recent Advances(LRM)

LRM: LARGE RECONSTRUCTION MODEL FOR
SINGLE IMAGE TO 3D

Yicong Hong'?* Kai Zhang' Jiuxiang Gu' Sai Bi' Yang Zhou'

Difan Liu' Feng Liu' Kalyan Sunkavalli' Trung Bui' Hao Tan'

! Adobe Research  ?Australian National Univeristy

mr.yiconghong@gmail.com

{kalz, jigu, sbi, yazhou,diliu, fengl, sunkaval,bui, hatan}@aaobe .com

ABSTRACT

We propose the first Large Reconstruction Model (LRM) that predicts the 3D
model of an object from a single input image within just 5 seconds. In contrast to
many previous methods that are trained on small-scale datasets such as ShapeNet
in a category-specific fashion, LRM adopis a highly scalable transformer-based
architecture with 500 million learnable parameters to directly predict a neural ra-
diance field (NeRF) from the input image. We train our model in an end-to-end
manner on massive multi-view data containing around 1 million objects, includ-
ing both synthetic renderings from Objaverse and real capiures from MVImgNet.
This combination of a high-capacity model and large-scale training data empowers
our model to be highly generalizable and produce high-quality 3D reconstructions
from various testing inputs, including real-world in-the-wild captures and images
created by generative models. Video demos and mlcmuablt 3D mc»hc» can be
found on our LRM project webpage: https: g

1 INTRODUCTION

Imagine if we could instantly create a 3D shape from a single image of an arbitrary object. Broad
applications in industrial design, animation, gaming, and AR/VR have strongly motivated relevant
research in seeking a generic and efficient approach towards this long-standing goal. Due to the
underlying ambiguity of 3D geometry in a single view, early learning-based methods usually per-
form well on specific categories, utilizing the category data prior to infer the overall shape (Yu et al.,
2021). Recently, advances in image generation, such as DALL-E (Ramesh et al., 2021) and Stable
Diffusion (Rombach et al., 2022), have inspired research that leverages the remarkable generaliza-
tion capability of 2D diffusion models to enable mulii-view supervision (Liu et al., 2023b; Tang
etal., 2023). However, many of these methods require delicate parameter tuning and regularization,
and their results are limited by the pre-trained 2D generative models. Meanwhile, there are many
approaches that rely on per-shape optimization (e.g. optimize a NeRF (Mildenhall et al., 2021,
Chan et al., 2022; Chen et al., 2022a; Miiller et al., 2022; Sun et al., 2022)) to construct a consistent
geometry; this process is often slow and impractical.

On the other hand, the great success in natural language processing (Devlin et al., 2018; Brown
et al., 2020; Chowdhery et al., 2022) and image processing (Caron et al., 2021; Radford et al.,
2021; Alayrac et al.,, 2022; Ramesh et al., 2022) can be largely credited to three critical factors:
(1) using highly scalable and effective neural networks, such as the Transformers (Vaswani et al.,
2017), for modeling the data distribution, (2) enormous datasets for learning generic priors, as well
as (3) self-supervised-like training objectives that encourage the model to discover the underlying
data structure while maintaining high scalability. For instance, the GPT (generative pre-trained
transformer) series (Radford et al., 2019; Brown et al., 2020; OpenAlI, 2023) build large language
maodels with huge transformer networks, large-scale data, and the simple next-word prediction task.
In light of this, we pose the same question for 3D: given sufficient 3D data and a large-scale training
framework, is it possible to learn a generic 3D prior for reconsiructing an object from a single
image?

FIntern at Adobe Research.
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Abstract. 3D content creation has achieved signiﬁm.m progress in terms . @) A _9_ - . . O D X =
of both quality and speed. Although current feed-forward models can a Sym m et rl C U - n et E |- ') (@) |' 01 M u |t| —VI eW | | | E
produce 3D objects in seconds, their resolution is constrained by the

intensive computation required during training. In this paper, we intro-

duce Large Multi-View Gaussian Model (LGM), a novel frame- X_I El -'-|_ | G . = 01| 5 DI (@) -CI)-I' '6'. @) E M_I =] -‘-H AI- E
work designed to generate high-resolution 3D models from text prompts (@) LS a u SS I a n S = — x -5- H O — / LA 0] o

or single-view images. Our key insights are two-fold: 1) 3D Represen-

tation: We propose multi-view Gaussian features as an efficient yet pow- o " o

erful representation, which can then be fused together for differentiable [@) I- ﬁ _||. HH|. = I—I El E 7 |_i [e) |_ 7-” OH ﬁ |_| E
rendering. 2) 3D Backbone: We present an asymmetric U-Net as a | H J_ : = o =
high-throughput backbone operating on multi-view images, which can be

* Work done while visiting S-Lab, Nanyang Technological University.
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Abstract. The advancement of real-time 3D scene reconstruction and
novel view synthesis has been significantly propelled by 3D Gaussian
Splatting (3DGS). However, effectively training large-scale 3DGS and
rendering it in real-time across various scales remains challenging. This
paper introduces CityGaussian (CityGS), which employs a novel divide-
and-conquer training approach and Level-of-Detail (LoD) strategy for
efficient large-scale 3DGS training and rendering. Specifically, the global
scene prior and adaptive training data selection enables efficient train-
ing and seamless fusion. Based on fused Gaussian primitives, we gener-
ate different detail levels through compression, and realize fast render-
ing across various scales through the proposed block-wise detail levels
selection and aggregation strategy. Extensive experimental results on
large-scale scenes demonstrate that our approach attains state-of-the-
art rendering quality, enabling consistent real-time rendering of large-
scale scenes across vastly different scales. Our project page is available
at https://dekulintesla.github.io/citygs/.

Keywords: Large-Scale Scene Reconstruction - Novel View Synthesis -
3D Gaussian Splatting

1 Introduction

3D large-scale scene reconstruction, as a pivotal component in AR/VR [6, 11,
aerial surveying [36], smart city [4,8], and autonomous driving [34], has drawn
extensive attention from academia and industry in recent decades. Such a task
pursues high-fidelity reconstruction and real-time rendering at different scales
for large aveas that typically span over 1.5 km? [36]. In the past few years, this
field has been dominated by neural radiance fields (NeRF) [21] based methods.
Representative works include Block-NeRF [34], BungeeNeRF [41], and ScaNeRF
[40]. But they still lack fidelity in details or exhibit sluggish performance.
Recently. 3D Gaussian Splatting (3DGS) [12] emerged as a promising al-
ternative solution. In contrast to NeRF, it employs explicit 3D Gaussians as
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DIFFSPLAT: REPURPOSING IMAGE DIFFUSION MOD-
ELS FOR SCALABLE GAUSSIAN SPLAT GENERATION
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ABSTRACT

Recent advancements in 3D content generation from text or a single image strug
gle with limited high-quality 3D datasets and inconsistency from 2D multi-view
generation. 'We introduce DIFFSPLAT, a novel 3D generative framework that na
tively generates 3D Gaussian splats by taming large-scale text-to-image diffusion
models. It differs from previous 3D generative models by effectively utilizing
web-scale 2D priors while maintaining 3D consistency in a unified model. To
bootstrap the training, a lightweight reconstruction model is proposed to instantly
produce multi-view Gaussian splat grids for scalable dataset curation. In conjunc
tion with th.. egular diffusion loss on 1h|_\L grids, a 3D rendering Im ;s intro
y with
image diffusion models enables seamless adaptions of numerous techniques for
image generation to the 3D realm. Extensive experiments reveal the superiority of
DIFESPLAT in text- and image-conditioned generation tasks and downstream ap
plications. Thorough ablation studies validate the efficacy of each critical design
choice and provide insights into the underlying mechanism.

1 INTRODUCTION

Generating 3D content from a single image or text is a long-standing challenge with a wide range
of applications, such as game design, digital arts, human avatars, and virtual reality. It is a highly
ill-posed problem that requires reasoning the unseen parts of any object in the 3D space only from a
single view or textual descriptions, posing a great challenge to both fidelity and generalizability.

With the development of diffusion generative models (5 Dic )15; . 2020),
recent works train conditional 3D generative ntl“nr}n directly on d.lmstln (\I' various '4D represen
tations (Micl 2022; ] N

2024b), as demonstrated in FlﬂurL 1 [IJ (]T(]]‘l]} u»‘]n""D sup«:r\
rendering techniques (A 4 2023; K s , 202

L, )as in F]“Llﬂ. I 1’"1 DL\plIL 1Dc0ns1sn_m) thn_) are llm]tui h\ Ih(. nuptr\ ision nu]‘_
.md can't utilize 2D priors from abundant pn_ trained mndLh Current advanced generalizable 3D
content creation methods (Li et al., 202 . 1) reconstruct implicit
iD n.pn_smmt ions from generated mu Iu view images using prLtr.nnLd D d]ﬁuxum maodels (Wang
& Shi, S 123 % 1 1). as illustrated in Figure | (3). Although these two
stage mclhods can reconstruct hlgh quu]l 1D content from multi-view posed images, the synthesis
pipeline collapses and fails to produce faithful results when generated images from upstreamed 2D
multi-view diffusion models are of poor quality or inconsistency.

ion wnh Ihc hc]p m d]ffcrcnlluh]c

To overcome the drawbacks of previous works, we present DIFFSPLAT, a novel 3D generative frame
work that exhibits multi-view consistency and effectively leverages generative priors from large
scale image datasets. We adopt 3D Gaussian Splatting (3DGS) (K . 2023) as the 3D content
representation for its efficient rendering and guality balance. Instead of relying on time-consuming
per-instance optimization to obtain 3D datasets for training (He ot al, 2024; 2 s 2024b), we
represent a 3D object by a set of well-structured splat 2D grids. During the training stag
can be instantly regressed from multi-view images in less than 0.1 seconds, fac SC

high-quality 3D dataset curation. Each Gaussian splat in 2D grids holds properties that imply object
texture and structure. Noting that image diffusion models trained on web-scale datasets are capable

i: Project lead; {: Corresponding author.
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