

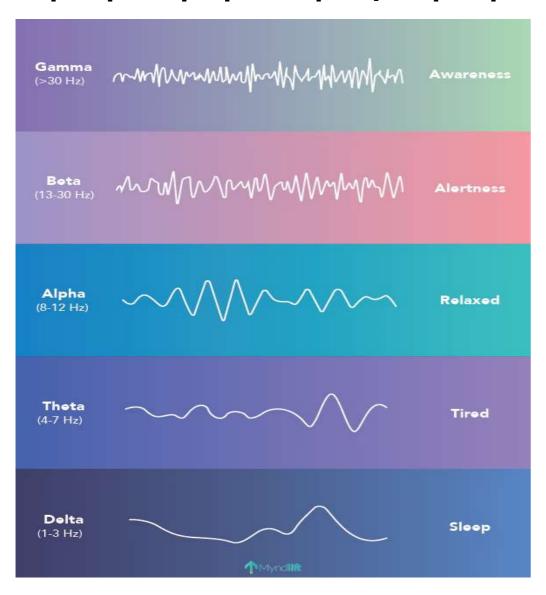
Spectral Properties of Brain Activity Under Two Anesthetics and Their Potential for Inducing Natural Sleep in Birds

인공지능응용학과 21101512 정상엽

Author

Ryan Tisdale

Roche · Pharma Research and Early Development (pRED) PhD


25 3,795 515
Publications Reads ① Citations

- Author: Ryan Tisdale
- 현재 활동: 미국 캘리포니아의 SRI International에 서 박사 후 연구원으로 활동중
- 연구 분야: 수면, EEG, REM 수면, 인지 신경과학
- 해당 논문의 인용 수는 5회, 그가 출판한 논문 및 저널 등의 인용 수는 총 약 515회 정도

Evidence that birds sleep in mid-flight NC Rattenborg, B Voirin, SM Cruz, R Tisdale, G Dell'Omo, HP Lipp, Nature communications 7 (1), 12468	335	2016
Hypocretin/orexin receptor pharmacology and sleep phases Y Sun, RK Tisdale, TS Kilduff The Orexin System. Basic Science and Role in Sleep Pathology 45, 22-37	49	2021
The low-down on sleeping down low: pigeons shift to lighter forms of sleep when sleeping near the ground RK Tisdale, JA Lesku, GJL Beckers, AL Vyssotski, NC Rattenborg Journal of Experimental Biology 221 (19), jeb182634	39	2018
Unihemispheric sleep in crocodilians? ML Kelly, RA Peters, RK Tisdale, JA Lesku Journal of Experimental Biology 218 (20), 3175-3178	33	2015
Evolution of sleep and adaptive sleeplessness JA Lesku, AE Aulsebrook, ML Kelly, RK Tisdale Handbook of Behavioral Neuroscience 30, 299-316	29	2019
Bird-like propagating brain activity in anesthetized Nile crocodiles RK Tisdale, JA Lesku, GJL Beckers, NC Rattenborg Sleep 41 (8), zsy105	26	2018
Sleep-related electrophysiology and behavior of tinamous (Eudromia elegans): tinamous do not sleep like ostriches RK Tisdale, AL Vyssotski, JA Lesku, NC Rattenborg Brain Behavior and Evolution 89 (4), 249-261	26	2017
Animal models of narcolepsy and the hypocretin/orexin system: Past, present, and future RK Tisdale, A Yamanaka, TS Kilduff Sleep 44 (6), zsaa278	25	2021
The development of sleep/wake disruption and cataplexy as hypocretin/orexin neurons degenerate in male vs. female Orexin/tTA; TetO-DTA Mice Y Sun, R Tisdale, S Park, SC Ma, J Heu, M Haire, G Allocca, A Yamanaka, Sleep 45 (12), zsac039	16	2022
Evidence that birds sleep in mid-flight. Nat Commun 7: 12468 NC Rattenborg, B Voirin, SM Cruz, R Tisdale, G Dell'Omo, HP Lipp,	6	2016
Spectral properties of brain activity under two anesthetics and their potential for inducing natural sleep in birds RK Tisdale, L Tieri, NC Rattenborg, GJL Beckers, JA Lesku Frontiers in Neuroscience 12, 881	5	2018

각 주파수 대역에서 뇌파의 역할

- 델타파 (0.5–4Hz): 깊은 수면(SWS, 서 파 수면)과 관련
- 세타파 (4–8Hz): 렘수면(REM) 및 일부 인지 과정과 관련
- 알파파 (8–13Hz): 휴식 상태에서 관찰 됨
- 베타파 (13–30Hz): 각성과 주의 집중 상태에서 증가
- 감마파 (>30Hz): 고차원 인지 기능과 관련

Slow Wave(서파)

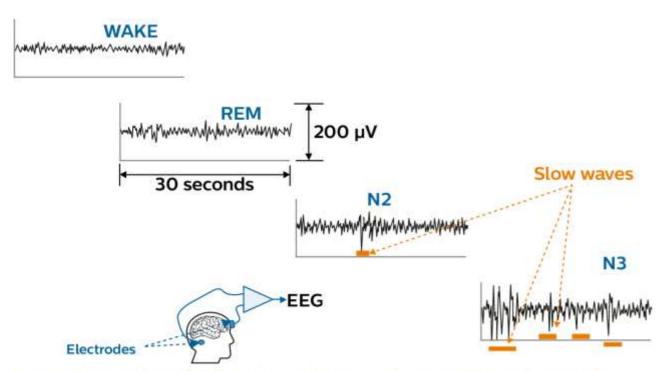
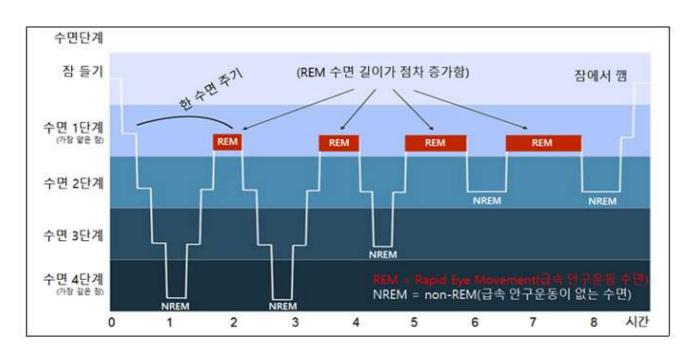
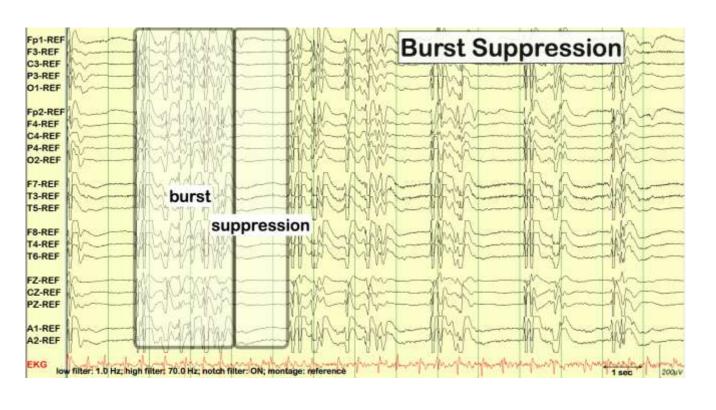
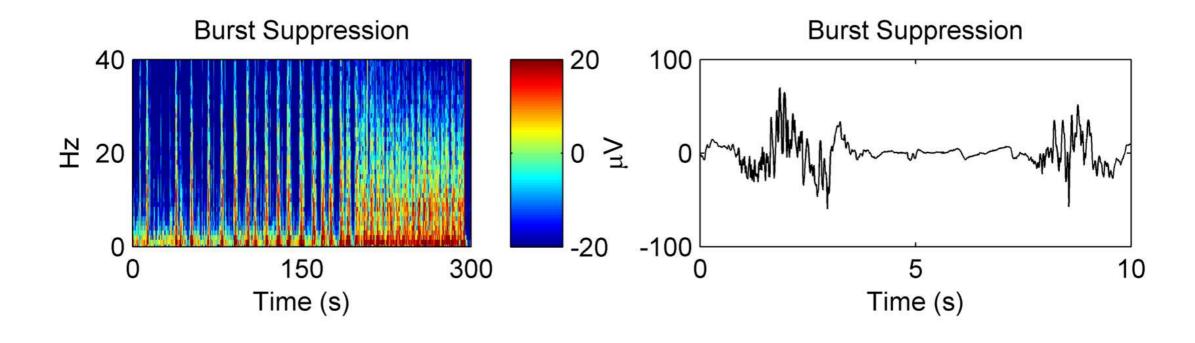



Figure 1: An electroencephalogram of the sleeping brain shows that slow waves characterize NREM sleep and are particularly prominent during N3 sleep.

- 0.5~4Hz(Delta Wave)의 뇌파 활동
- High amplitude, low frequency pattern
- 수면, 마취 상태, 깊은 혼수(coma) 상 태 등에서 발생


Slow Wave Sleep(SWS, 서파 수면)

- Sleep Cycle(수면 단계) 중 NREM3라고 불림.
- NREM 수면 단계 중 가장 깊은 단계
- Slow wave가 지배적인 수면 단계


Burst Suppression(폭발 억제)

- 마취 또는 뇌 손상 시 나타나는 비정 상적인 EEG 패턴
- 강한 신경 활동(Burst)와 거의 없는 신 경 활동(suppression)이 교차하는 형 태
- 정상적인 수면 상태에서는 Burst Suppression이 일어나지 않는다.

Burst Suppression in Spectrogram

II. Purpose

• 포유류와 조류 모두 SWS와 REM 수면을 보임.

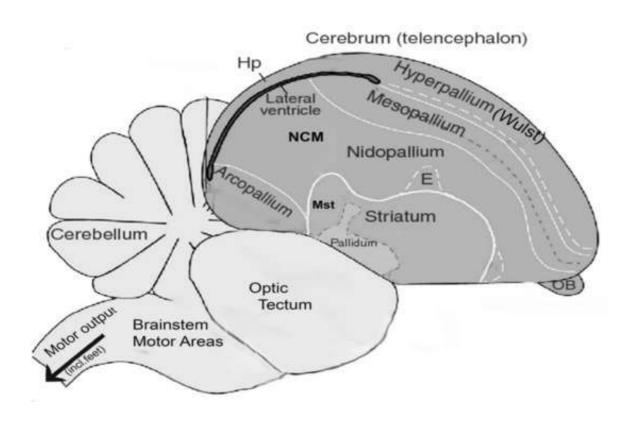
• Isoflurnae(아이소플루레인)과 Urethane(우레탄) 마취제를 사용하여 비둘기를 대상으로 수면 상태를 유도함.

• <u>Isoflurane과 Urethane 마취 상태에서 나타나는 뇌파 특성이 자</u> 연수면(SWS)와 얼마나 유사한지 분석하고, 마취제가 수면을 유 도하는 기전에 미치는 영향을 탐구하고자 한다.

III. Materials and Methods

Anesthetic(마취제)

Isoflurane(아이소플루레인)


- 할로겐화된 흡입 마취제(halogenated inhalant anesthetics)
- Isoflurane 마취 상태에서 EEG slow wave와 isoelectric(무전위) EEG pattern이 번갈아 나타남.
- 농도가 높아지면, isoelectric pattern이 길어 지고, 낮아지면 slow wave pattern이 지속된 다.

Urethane(우레탄)

- 비흡입성 마취제로 동물 실험에서 많이 사용
- Urethane 마취는 포유류에서 SWS와 REM 수 면 간의 주기적인 전환과 유사한 뇌파 패턴을 유도하는 것으로 알려짐
- 우레탄 마취 상태에서는 slow wave와 EEG activation(awake brain wave pattern)이 번갈 아 나타나며, REM 수면과 유사한 상태를 유 도할 수 있다.

Implant Procedure(이식 절차)

- 총 4개의 전극(electrode)을 사용.
- 2개는 중위대뇌피질(mesopallium) 위에, 나머지 2개는 상위대뇌피질(hyperpallium) 위에 배치
- 상위 대뇌피질 전극은 midline(정중선)에 서 양쪽으로 2.0mm 떨어진 위치에, 중위대뇌피질 전극은 정중선에서 4.0mm 떨어진 위치에 배치
- Reference 전극은 소뇌(Cerebellum)에 위치
- 비둘기는 기록을 시작하기 전 최소 1주일 의 수술 후 회복기간을 가짐.

Natural Sleep Methods

- 비둘기는 통풍 가능한 개별 실험 케이지(79cm*60cm*60cm)에 보관
- 케이지 외부에 조명을 설치하여 12시간 주간/ 12시간 야간 광주기를 유지
- 기록조건은 최소 1주일 동안 적응한 후, 야간동안(12시간 동안 조명 소등) 기초 수면 기록이 수행됨.

Natural Sleep Recordings(자연 수면 기록)

- 4초(epoch) 단위로 데이터를 분석하여 SWS 포함 여부를 판별
- EEG에서 Slow Wave와 Immobility(비활동성)가 함께 나타날 때 SWS로 분류
- Slow wave가 안정적으로 유지되는지를 확인

Isoflurane Methods

- 7마리의 비둘기
- 5% 농도 -> 의식 소실 시, 4% 농도 -> 기록 장치 부착 -> 1.5% 농도까지 감소
- Pedal reflex(발바닥 반사 반응)을 통해서 마취 깊이를 지속적으로 모니터링하고,
 0.9%~1.5% 농도로 유지
- 새가 각성 징후를 보이면, 바로 농도를 3~4%까지 증가시키고 점진적으로 농도를 감소시킴

Isoflurane Recordings(아이소플루레인 기록)

- Burst Suppression의 지속시간이 짧아 2초(epoch) 단위로 분석하여, Burst Suppression이 어떻게 변하는지 확인
- 순수한 slow wave만을 분석하기 위해 Suppresion 시간이 0.5~1.0초 이상 지속되는 epoch는 분석에서 제외.
- Slow wave가 유지되는 구간 확인

Urethane Methods

- 4마리의 비둘기
- 5% 농도의 Isoflurane -> 충분한 수술단계의 마취 상태, 기록장치 부착 -> 우레탄 정맥 삽입관 삽입-> Isoflurane 주입 중단 -> 우레탄 투여
- 3마리는 정맥 삽입관을 right basilic vein에 삽입하고, 1마리는 right femur에 삽입
- 각 비둘기에 0.1mL or 1.0mL or 1.5mL 용량의 우레탄을 투여. 최종 투여량은 3.0mL를 넘기지 않음
- 15~25분 간격으로 추가 용량을 투여하면서, 기록을 진행
- 기록 종료 시, 다시 5%의 Isoflurane을 주입하고 안락사 진행

Urethane Recordings(우레탄 기록)

- 2초(epoch) 단위로 분석
- 모든 용량에서 slow wave가 지속적으로 나타났으므로, 별도의 epoch 판정 과정이 필요하지 않음.

Summary Table

Condition	Epoch Length	Analysis Target	characteristic
Natural Sleep(SWS)	4 seconds	Slow wave + non-activity state	Checking Stable State of SWS
Isoflurane	2 seconds	Slow Wave (Which is including Burst Suppression)	Checking isoelectric State
Urethane	2 seconds	every moment (including Slow Wave)	no need

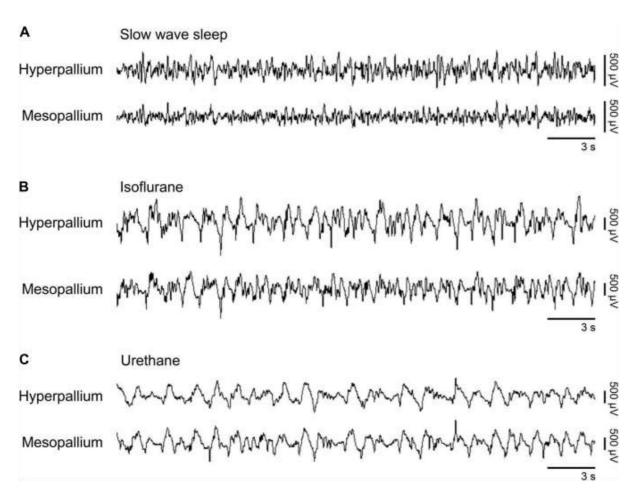
III. Materials and Methods

Analysis Methods(1)

- Sampling Rate: 200Hz
- Power Analysis: Multi-Taper Method, Fast Fourier Transform, Hamming Window
- Interhemispheric Asymmetry Analysis: Fast Fourier Transform, Asymmetry Index
- 앞에서 Time per One Epoch를 마취제를 투여한 경우에서 2초로 지정했으므로 주파수 해상도는 0.5Hz가 됨. 샘플링 주파수는 200Hz로 지정 되었으며, 윈도우 크기는 400 samples로 지정됨.

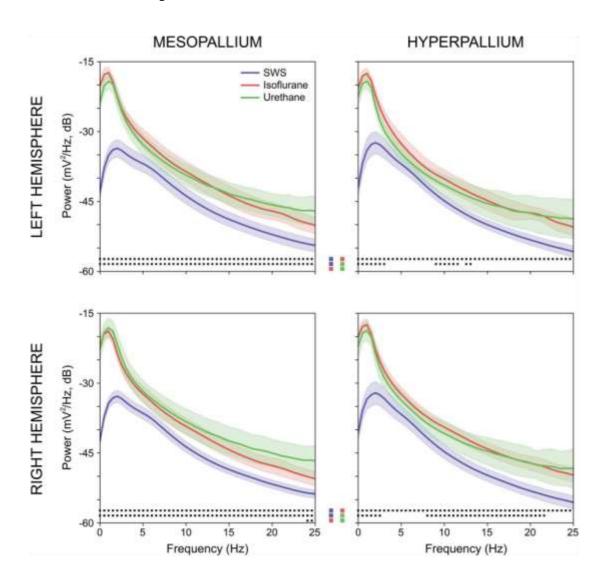
주파수 해상도(Frequency Resolution) =
$$\frac{\text{샘플링 주파수}(Sampling Rate)}{\text{윈도우 크기}(Window Size, samples)} = \frac{1}{Time \ per \ One \ Epoch}$$

• 해당 연구 목적은 0.5~4.5Hz의 Slow Wave를 분석하기 위한 것이므로, 0.5Hz의 주파수 해 상도는 본 연구에 적합함

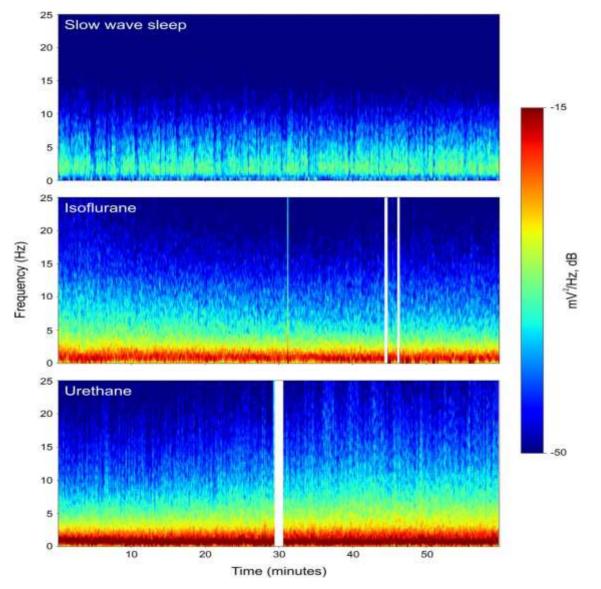

Analysis Methods(2)

- Bandwidth Parameter(대역폭 매개변수): 2Hz
- 일반적으로 Slow Wave를 분석할 때, 일반적으로 1~3Hz 대역폭 매개변수를 사용 함
- 하나의 taper가 2Hz 범위 내에서 스펙트럼을 분석하고, 여러 개의 taper로 0.5~4.5Hz 내의 Slow Wave를 커버할 수 있음
- EEG 기록 소프트웨어: REMLogic 3.4 (Embla, Broomfield, CO, United States)

IV. Results


Comparison of Slow wave

- Natural SWS 동안 발생하는 Slow wave는 Isoflurane과 Urethane 마취 상 태에서 발생하는 서파와 시각적으로 유사
- 그러나, 두 마취제에서 Slow Wave 진 폭은 SWS보다 높았음


Comparison of Power

- SWS, Isoflurane, Urethane과 관련된 power는 3Hz 미만의 주파수 대역에 집중된 후 감소
- 그러나, Isoflurane과 Urethane은 최대 전력이 1~1.5Hz에서, SWS는 2~2.5Hz 에서 발생
- 또한, SWS 동안 Power는 모든 주파수 및 분석된 뇌 영역에서 일관되게 Isoflurane, Urethane 마취 상태보다 낮았음

Multi-taper Spectrogram

- SWS와 Isoflurane 및 Urethane 마취 상태 간의 차이와는 대조적으로 두 마취제는 자연 수면보다 서로 유사
- 전 슬라이드의 그래프와 동일하게, 모든 주파수에서 일관되게 Isoflurane 및 Urethane 마취 상태에서 EEG 전력은 SWS 상태에서의 EEG 전력보다 높음.
- 자연 수면(SWS)에서는 저주파 (0.5~4.5Hz) Slow Wave가 지속적으로 유 지되지만, Isoflurane 마취에서는 Burst suppression이 반복되며 간헐적인 Slow Wave 활동이 나타남

V. Discussion

Spectral Comparison of SWS and Anesthesia

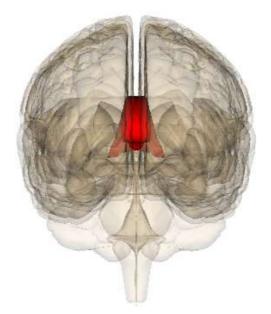
- 모든 기록 조건에서, 뇌는 고진폭의 Slow Wave를 생성하며, 3Hz 이하의 주파수 대역에 서 peak power density를 보였음
- 그러나, 마취 상태에서의 전력 밀도는 모든 주파수 대역에서 sws에 비해 증가했음
- 전력 밀도의 증가와 마취 상태에서 가장 낮은 주파수 대역에 전력이 집중되는 현상은 해당 마취제들이 저주파 신호를 생성하는 수면 유도 경로의 특정 구성 요소에 적용할 가능성을 시사함
- Isoflurane은 포유류와 초파리에서 자연 수면 생성 경로에 작용하는 것으로 알려져 있으며, Isoflurane에 의해 유도된 Slow Wave는 자발적인 SWS가 발생한 것처럼 SWS의 필요를 완화시키는 것으로 보인다.

Urethane-Induced SWS/REM Sleep Cycling in Birds?

- Urethane으로 마취된 쥐에서는 자연 수면에서의 SWS와 REM 수면 간 주기적 전화이 발생하는 것과 유사한 EEG 주기적 패턴이 나타난다고 알려짐
- Urethane으로 마취된 닭에서는 EEG Slow Wave가 나타나는 구간과 REM 수면을 시사하는 안구 운동과 함께 EEG 활성화가 나타나는 구간이 주기적으로 전환되 는 패턴을 보인다고 알려짐
- 그러나, 본 연구에서 Urethane에 마취된 비둘기에서는 주기적인 EEG 패턴도, REM 수면과 관련된 행동도 관찰되지 않았음. 이는 닭에서 사용된 것과 동일한 용량의 Urethane이 투여되었음에도 불구하고 나타난 결과임

VI. Conclusion

Conclusion


- Isoflurane과 Urethane 마취 상태에서 Slow Wave는 Nautral Sleep과 비슷한 특성을 가지지만, REM 수면으로의 전환이나 Slow wave 활동의 지속성에서 차이가 있음
- 마취제의 종류 마취제의 용량이 변수로 작용하여 뇌의 활동 양상을 직접적으로 영향을 끼칠 수 있다는 것을 시사함
- 그러나, 조류의 뇌의 구조는 인간과 포유류와 많이 다름. 대표적으로 조류는 뇌량이 존재 하지 않으며, 인간과 많은 포유류는 뇌량이 존재함. 따라서, 추가 적인 포유류에 관한 연구 논문들이 필요함

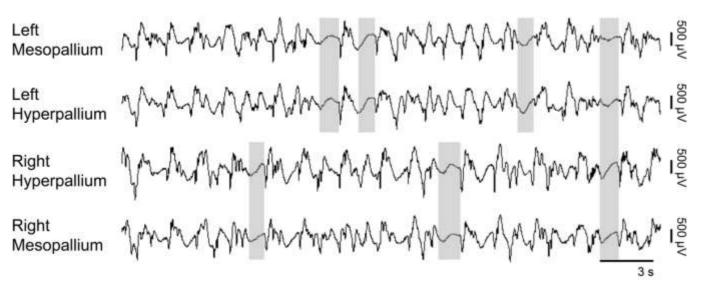
VII. Addition

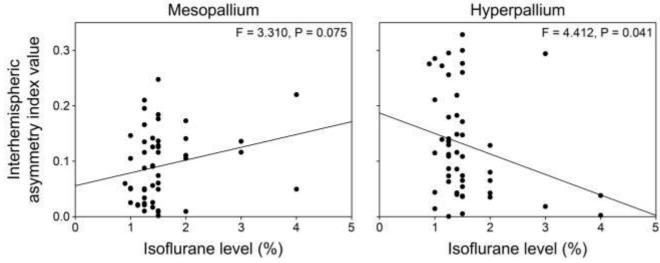
뇌량(Corpus Callosum)

- 좌우 대뇌 사이에 위치하여 이들을 연 결하는 신경 세포 집합
- 뇌량은 두 반구 간의 정보를 주고받게 하여, 뇌의 두 반구가 협력하여 기능을 할 수 있도록 도움
- 두 반구를 동시에 동기화하는 방식으로 작동할 수 있으며, 인간은 Natural Sleep State일 경우 두 반구가 동시에 수면 상태에 들어가며 동기화 됨

뇌량(Corpus Callosum)이 조류에 미치는 영향

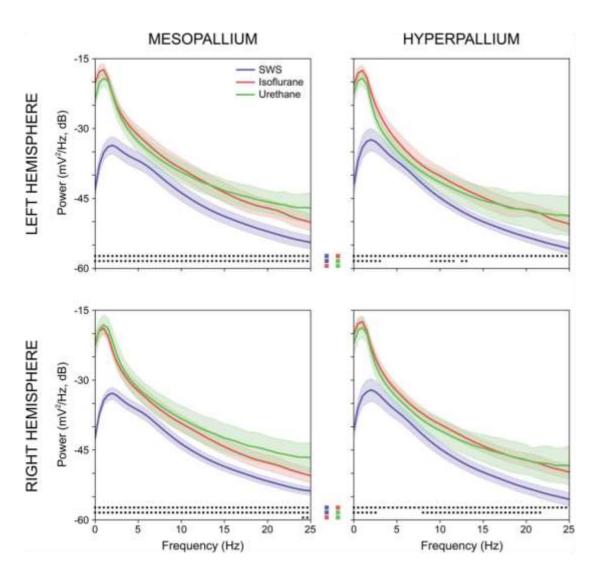
- 조류는 뇌량이 없으며, 대신에 두 반구는 다른 방식으로 연결되고 독립적으로 작용
- 이로 인해, 조류는 일측성 수면(unihemispheric sleep)이 가능하며, 한쪽 반구는 Sleep State, 다른 쪽은 Awake State에서 활동이 가능함
- Isoflurane 마취 중에는 한쪽 반구에서만 Slow Wave 활동이 발생하는 비대칭적 뇌파 패턴 이 나타났었음


Interhemispheric Asymmetry Index(반구 간 비대칭 지수)


$$\frac{L-R}{L+R}$$

- L: 좌반구의 0.78~3.90Hz 범위 주파수 대역의 power density
- R: 우반구의 0.78~3.90Hz 범위 주파수 대역의 power density
- 0에 가까울수록, 두 반구의 양상은 양측성 (bihemispheric)을 나타내고, 0으로 부터 멀어져 양수나 음수일수록 일측성(unihemispheric)을 나타냄

Interhemispheric Asymmetry(반구 간 비대칭)



- Isoflurane 마취 상태에서 Burst Suppression은 양측성 (bihemispheric)과 일측성 (unihemispheric) 모두에서 발생
- Isoflurane 농도가 증가함에 따라 상위대뇌피질(Hyperpallium)에서 의 비대칭 지수 값은 유의미하게 감소하고, 중위대뇌피질 (Mesopllium)에서는 반대의 경향 을 보임

Interhemispheric Asymmetry(반구 간 비대칭)

- 앞의 "Comparison of Power" 슬 라이드에서 보았던 그래프
- 상위대뇌피질(Hyperpallium)의 좌반구와 우반구의 전력 (power)그래프 양상은 크게 다 르지 않음
- 그러나, 중위대뇌피지 (Mesopallium)의 좌반구와 우 반구의 전력(power) 그래프 양 상은 사뭇 다름

Urethane Interhemispheric Asymmetry

- Urethane 마취 상태에서는 Slow Wave가 양측에서 동시에 발생하였고 지속적이었지만,
 반구 간 비대칭적 뇌파 양상은 관찰되지 않음
- Isoflurane 마취에서 나타난 비대칭적 Burst Suppression과 달리, Urethane 마취에서는 Slow Wave 활동이 더 균등하게 나타남
- 따라서, 별도의 Interhemispheric Asymmetry Analysis를 진행하지 않음

Personal Thinking(1)

- 해당 연구에서 Isoflurane을 사용한 마취에서는 Burst Suppression이 양측성 (bihemispheric)과 일측성(unihemispheric)을 모두 띠고 있음
- 주파수에 따른 전력(power) 비교 그래프에서도 중위대뇌피질(mesopallium)의 좌반구 우반구 영역의 전력 그래프는 일측성을 나타내며, 상위대뇌피질(hyperpallium)의 좌반 구 우반구 영역의 전력 그래프는 양측성을 나타냄
- 그러나, 조류는 뇌량이 없어 직접적인 좌반구와 우반구의 동기화 terminal이 존재하지 않음
- 이를 미루어 보아, <u>비둘기를 포함한 조류의 뇌 구조에는 양측성과 일측성 모두를 가질</u> 수 있는 다른 system이 존재할 것이라고 예측가능함

Personal Thinking(2)

- 본 논문 발표는 Binaural Beats를 이용하여 마취 후 섬망현상(Postoperative Delirium, POD)을 줄이고, 마취제 용량을 줄이기 위해 찾아본 결과이다.
- 본인의 보편적인 생각은 "마취제를 투여했을 때, Natural Sleep(자연 수면)과 유사한 뇌의 활동 양상을 만들 수 있다면, 획기적으로 마취 후 섬망현상을 줄일 수 있을 것" 이다.
- 그 중에서 Burst Suppression은 인간이 평상 시 Natural Sleep에서 발생할 수 없으며, 뇌 손상 및 마취 등의 상태에서 발생할 수 있는 것이다. 따라서, Burst Suppression와 마취 후 섬망현상은 밀접한 관계를 갖고 있을 것이다.
- 실제로, Burst Suppression과 섬망현상(Postoperative Delirium, POD)가 관계가 많다는 연구 논문들이 존재한다.
- 발표자의 다음 목표는 Burst Suppression과 섬망현상의 관계에 관한 논문이 될 것이다.

Thanks for listening