

Neural Discrete Representation Learning

(NeurlPS-2017)

0

Aäron van den Oord

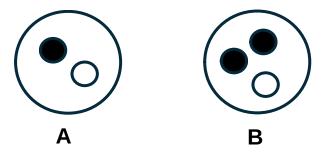
Google DeepMind Adresse e-mail validée de google.com - Page d'accueil Machine Learning

TITRE	CITÉE PAR	ANNÉE
Representation learning with contrastive predictive coding A Oord, Y Li, O Vinyals arXiv preprint arXiv:1807.03748	10760	2018
WaveNet: A Generative Model for Raw Audio	9531 *	2016

WaveNet: A Generative Model for Raw Audio A van den Oord, S Dieleman, H Zen, K Simonyan, O Vinyals, A Graves, arXiv preprint arXiv:1609.03499	9531 *	2016
Neural discrete representation learning A Van Den Oord, O Vinyals Advances in neural information processing systems 30	5209	2017
Conditional image generation with pixelcnn decoders A Van den Oord, N Kalchbrenner, L Espeholt, O Vinyals, A Graves Advances in neural information processing systems 29	2998	2016
Pixel recurrent neural networks A Van Den Oord, N Kalchbrenner, K Kavukcuoglu International conference on machine learning, 1747-1756	2994	2016
Generating diverse high-fidelity images with vq-vae-2 A Razavi, A Van den Oord, O Vinyals Advances in neural information processing systems 32	2042	2019
Deep content-based music recommendation A Van den Oord, S Dieleman, B Schrauwen Advances in neural information processing systems 26	1706	2013
Data-efficient image recognition with contrastive predictive coding OJ Hénaff, A Srinivas, J De Fauw, A Razavi, C Doersch, ASM Eslami, International Conference on Machine Learning, 4182-4192	1675	2020
A note on the evaluation of generative models L Theis, A Oord, M Bethge arXiv preprint arXiv:1511.01844	1360	2015
Efficient neural audio synthesis N Kalchbrenner, E Elsen, K Simonyan, S Noury, N Casagrande, International Conference on Machine Learning, 2410-2419	1070	2018
Parallel wavenet: Fast high-fidelity speech synthesis A Oord, Y Li, I Babuschkin, K Simonyan, O Vinyals, K Kavukcuoglu, International conference on machine learning, 3918-3926	1030	2018
On variational bounds of mutual information B Poole, S Ozair, A Van Den Oord, A Alemi, G Tucker International Conference on Machine Learning, 5171-5180	948	2019
Count-based exploration with neural density models G Ostrovski, MG Bellemare, A Oord, R Munos International conference on machine learning, 2721-2730	772	2017
Neural machine translation in linear time N Kalchbrenner arXiv preprint arXiv:1610.10099	726	2016
Adversarial risk and the dangers of evaluating against weak attacks J Uesato, B O'donoghue, P Kohli, A Oord	685	2018

OBTENIR MON PROPRE PROFIL

Citations	Citations	Citations	Citations 49169 41 48 indice h 48 indice i10 76 11 8 5 2 2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICE 0 article 1 ar	Citations	Citée par		TOUT AFFICE
indice h	indice h	indice h	indice h	indice h		Toutes	Depuis 2
indice i10 76 11 2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	indice i10 76 11 8 2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	indice i10 76 11 8 2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	indice i10 76 11 8 2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	indice i10 76 11 8 2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi			41
2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi			
2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICE 0 article 1 ar	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi			11
2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICH 0 article 1 ar non disponibles disponi			- 8
2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	2018 2019 2020 2021 2022 2023 2024 2025 Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	_	Ш	- 5
Accès public TOUT AFFICI 0 article 1 ar non disponibles disponi	Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	Accès public TOUT AFFICE 0 article 1 ar non disponibles disponi	- 14	ш	2
Accès public TOUTAFFICI 0 article 1 ar non disponibles disponi	Accès public TOUTAFFICE 0 article 1 ar non disponibles disponi	Accès public TOUTAFFICE 0 article 1 ar non disponibles disponi	Accès public TOUTAFFICE 0 article 1 ar non disponibles disponi	Accès public TOUTAFFICE 0 article 1 ar non disponibles disponi	2018 2010 2020 2	024 2022 2023	2024 2025
non disponibles disponi	non disponibles disponi	non disponibles disponi	non disponibles disponi	non disponibles disponi			
					0 article		1 ar
Sur la base des exigences liées au financeme	Sur la base des exigences liées au financeme	Sur la base des exigences liées au financeme	Sur la base des exigences liées au financeme	Sur la base des exigences liées au financeme			disponi
						xigences liées	
						xigences liées	
						xigences liées	


O Deep Learning

Deep Learing? -> Probabilistic Inference Machine Why? Output Input Model X 서로 다른 정도 Loss • Cross Entropy(CE) MSE • Etc...


MLE(Maximum Likelihood Estimation)

- Likelihood
- "결과를 바탕으로, 그 결과를 만드는 조건을 찾음"

MLE : 결과를 최대화 하는 조건을 선택하는 방법

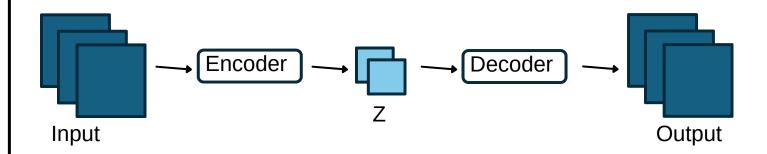
MAP(Maximum A Posterior)

"사후 분포 p(z|x) 를 최대화 하는 x값을 추정 "

O. Deep Learning

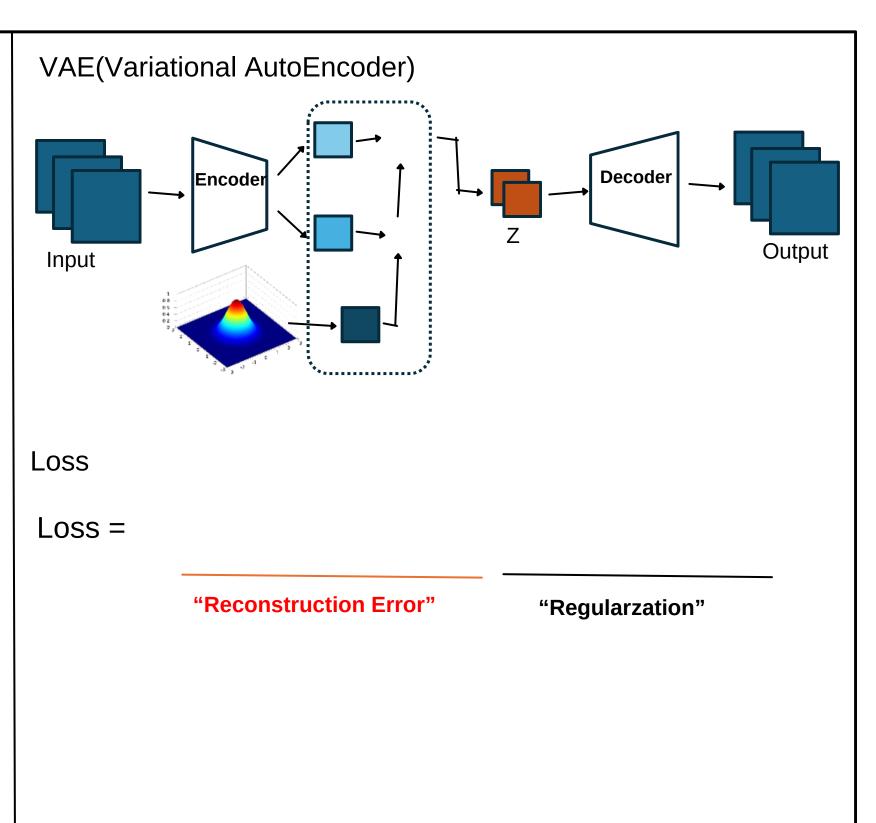
Cross entropy

두 확률분포 P,Q의 차이를 계산

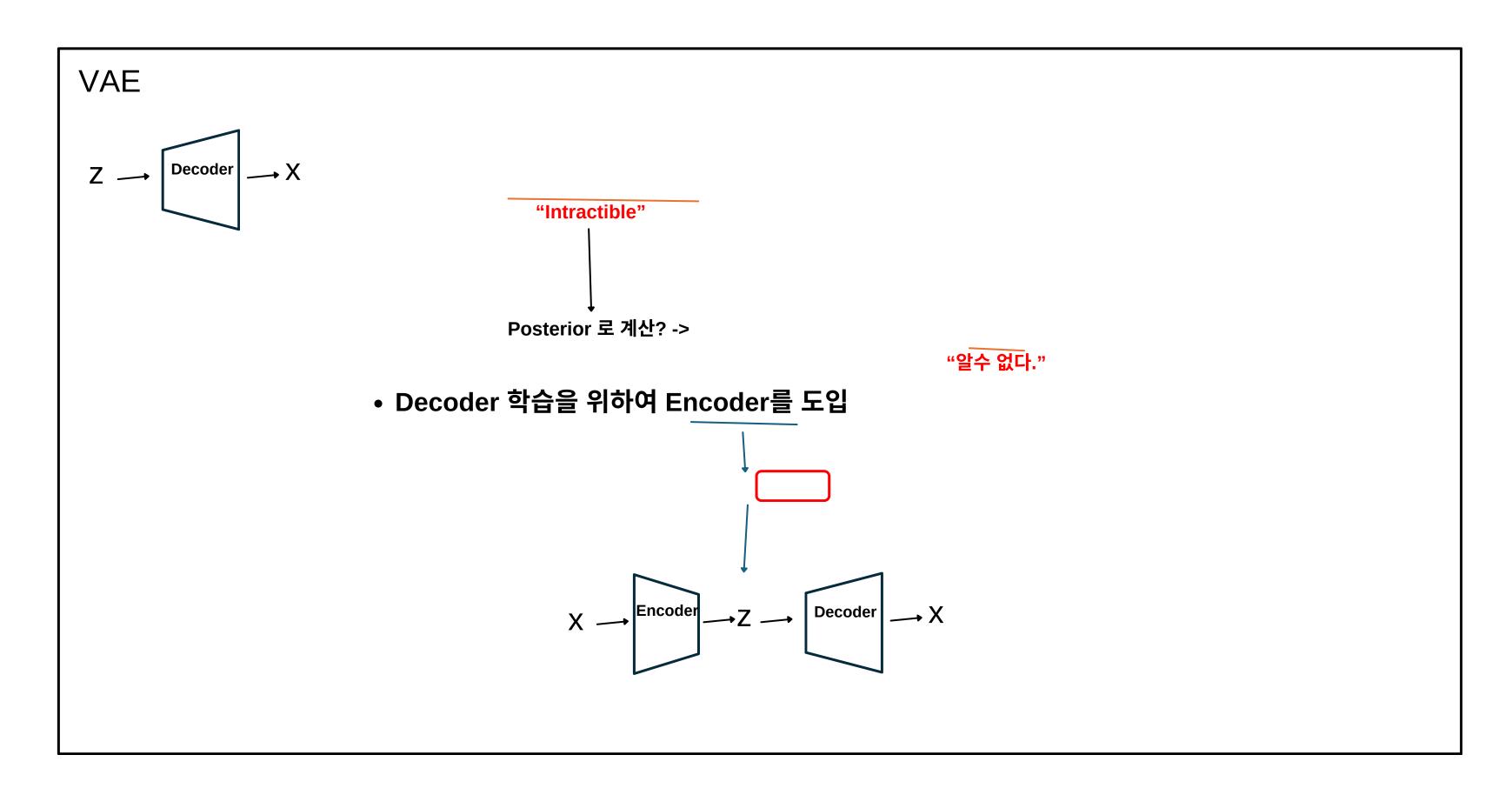

• Kullback-Leibler divergence(KDL)

• Jenson-Shannon divergence(JSD)

1 AutoEncode

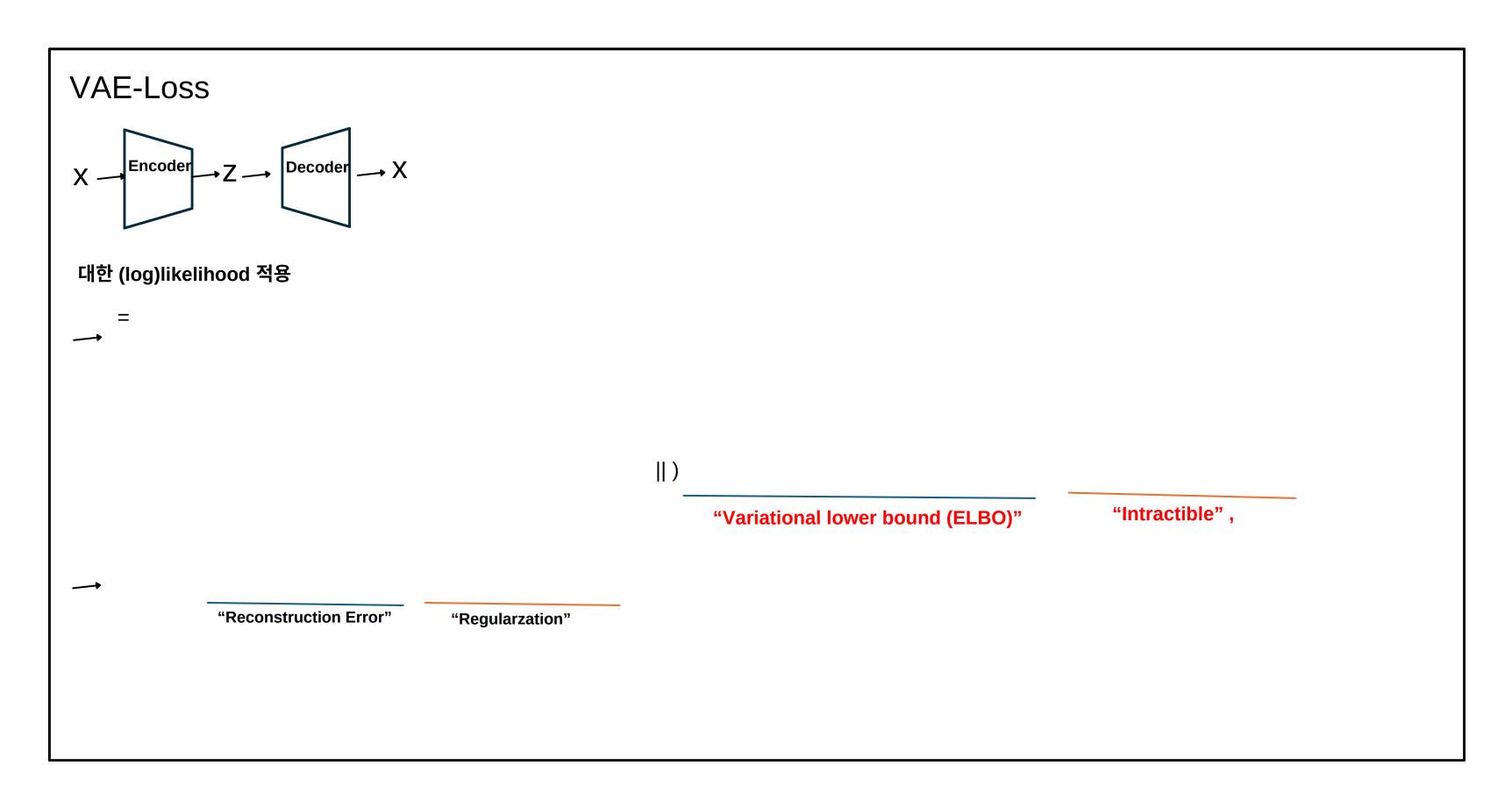


Where is it used?


- Image generation
- Denoise
- Anommaly Detection
- Deimension Reduction
- -> 목적에 따라서 중점을 두는 부분이 다르다

Loss

-> Reconstruction Error + Etc..

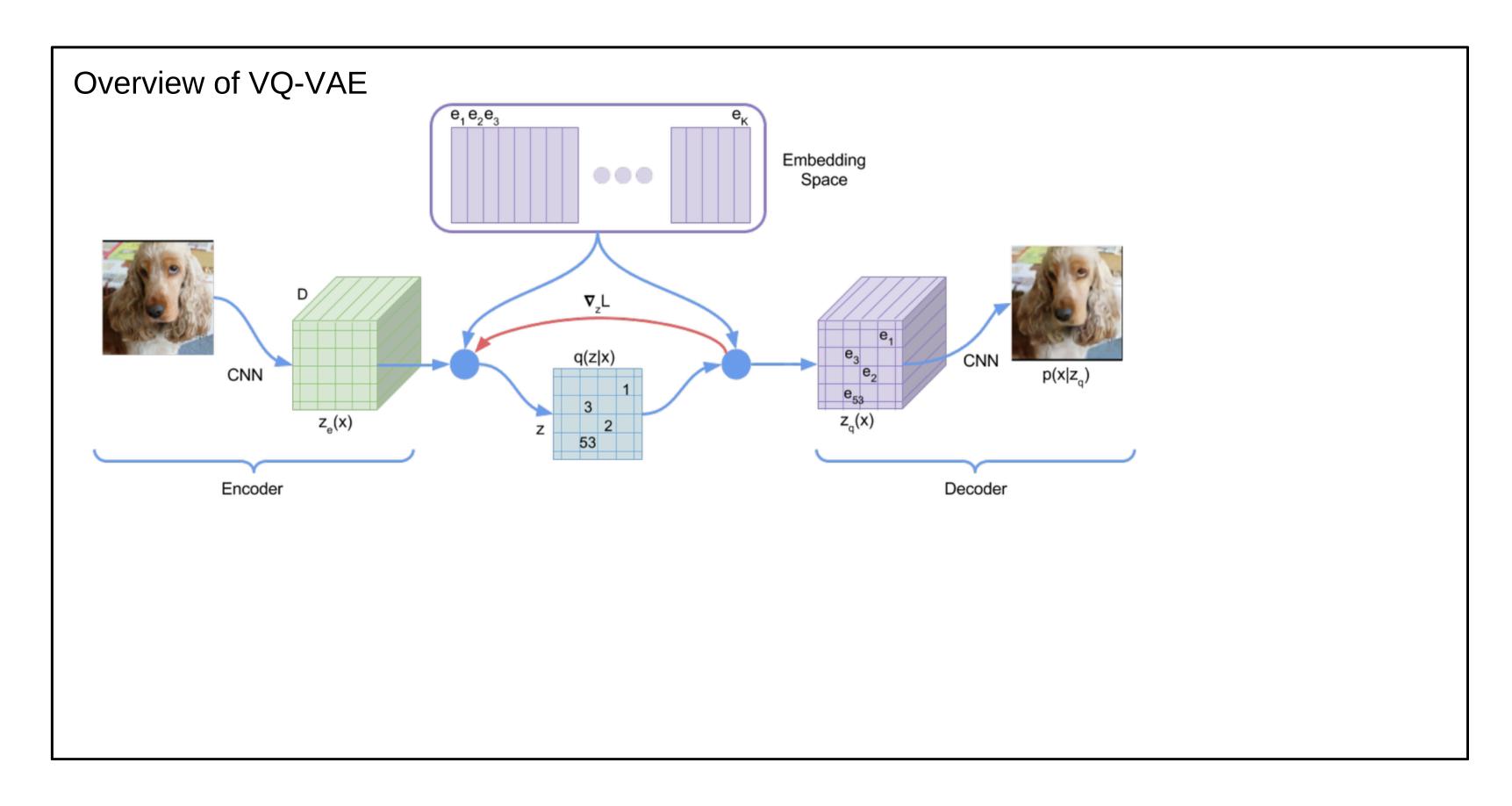


. VQ-VAE

2 . VQ-VAE

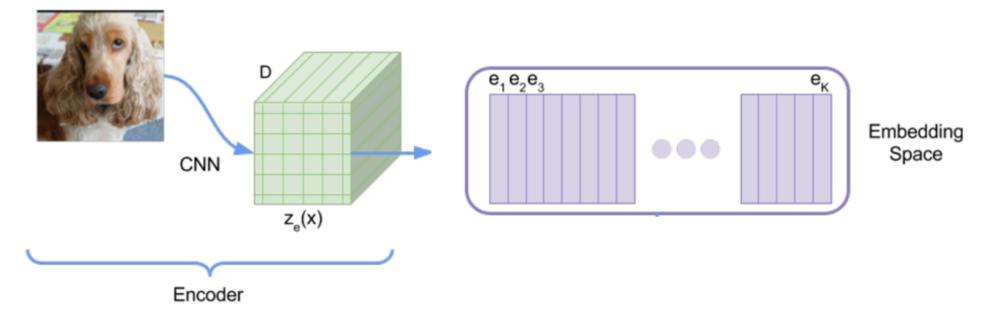
VQ-VAE

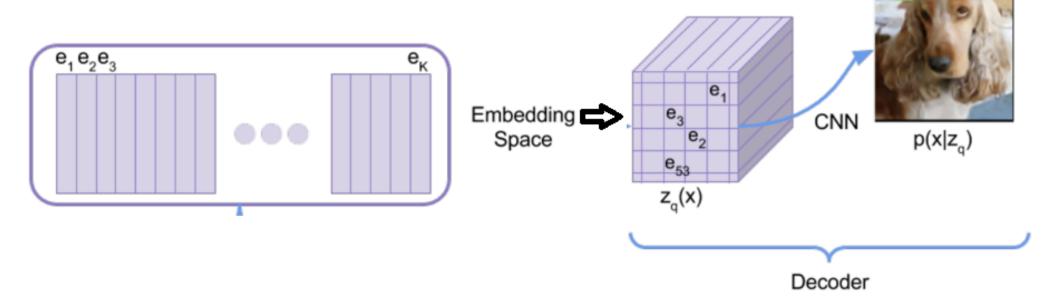
- AutoEncoder 기반의 생성 모델
- Encoder 의 output이 discrete 함
- VAE의 "Posterior collapse" 문제를 해결


What is Posterior Collapse?

• Decoder의 영향이 너무 커서 학습중에 KL항을 과도하게 줄이는 방향으로 업데이트 되는 것

- 입력 x에 무관하게 사전분포 p(z) 에 붕괴(collapse) 된다.
- 결론적으로 인코더는 데이터 x를 반영하지 않게되고 z는 거의 동일해진다.

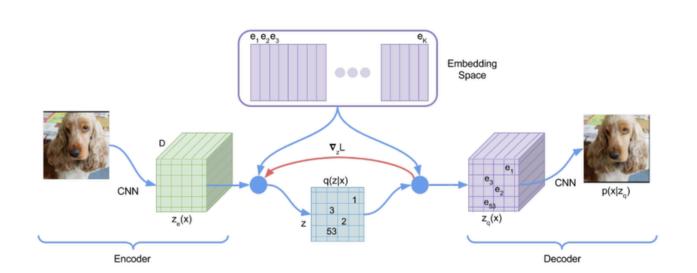

2 . VQ-VAE


Encoder of VQ-VAE

- 1. Input x 가 Encoder를 통과하여 성
- 2.: 코드북 벡터와 인코더의 결과를 유클리드 거리 계산
- 3. 가장 가까운 벡터를 코드북에서 선택:
- 4. 포는 one-hot 분포
- 5. **(KL항은 상수)**

Decoder of VQ-VAE

1. Quntization vector 가 decoder의 입력으로 들어감



Loss of VQ-VAE

"Reconstruction

"Code book"

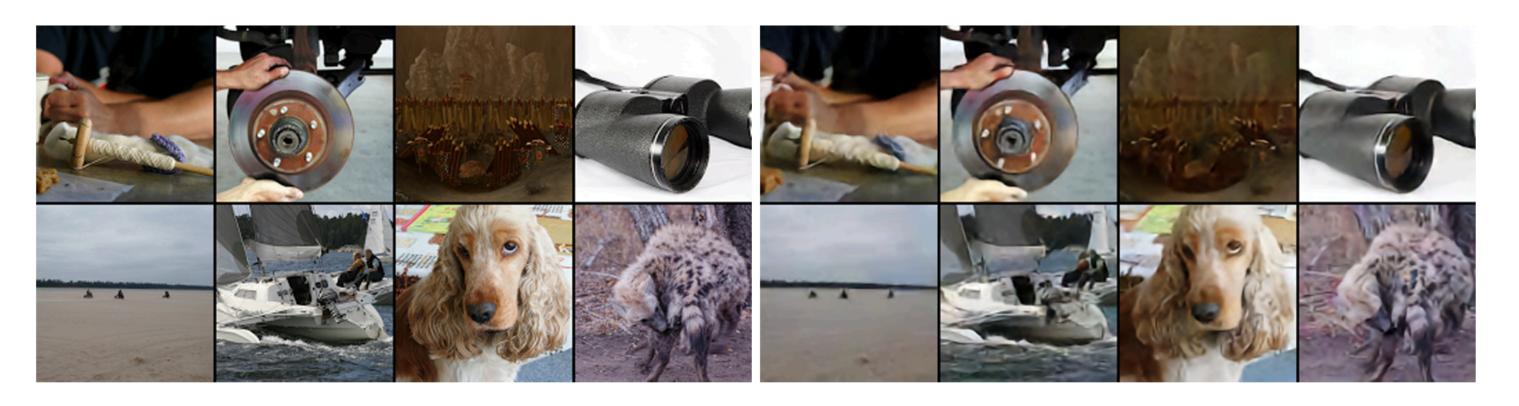
"Commitment"

1. Reconstruction

- 원본을 재구성
- Straight through-Gradient 로 gradient 복사
- 따라서 코드북은 디코더의 gradient 를 받지 않는다.

2. Code book

- Code book을 업데이트
- 임베딩 벡터를 I2 error를 이용하여 업데이트 한다 (SG: Stop-Gradient)
- 인코더의 출력과 embedding vector를 가까워지게 한다.

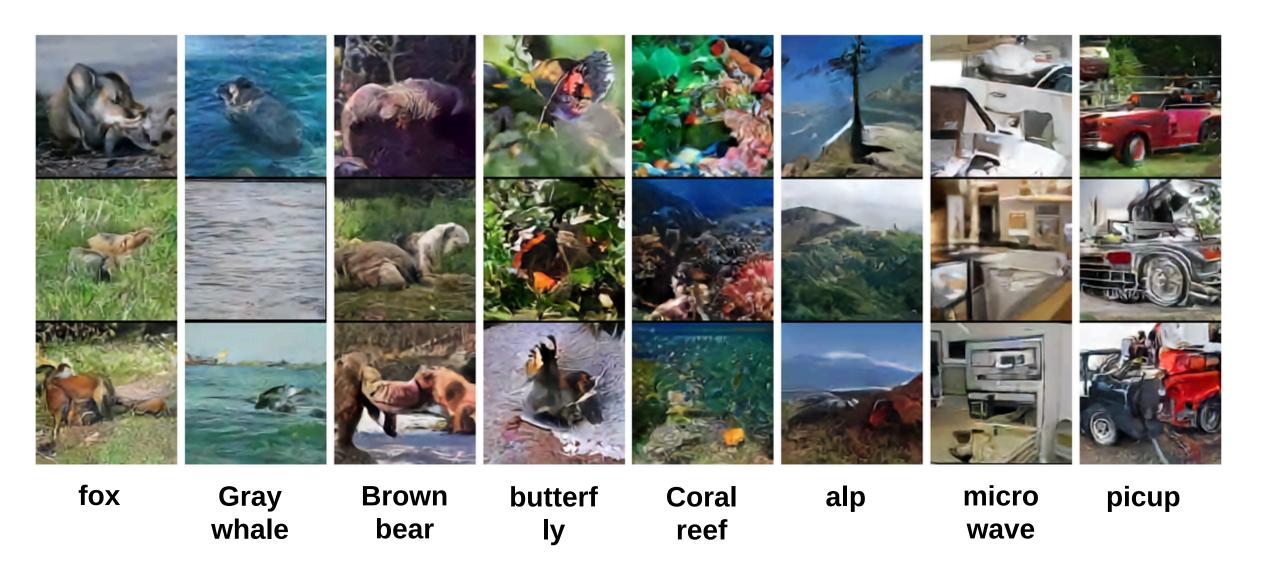

3. Commitment

- Encoder를 업데이트
- 임베딩 I2 error를 이용하여 업데이트 한다 (SG: Stop-Gradient)
- Embedding vector와 인코더의 출력을 가까워지게 한다.

한쪽으로 치우치는게 아닌 서로 당기는 방 향으로 업데이트

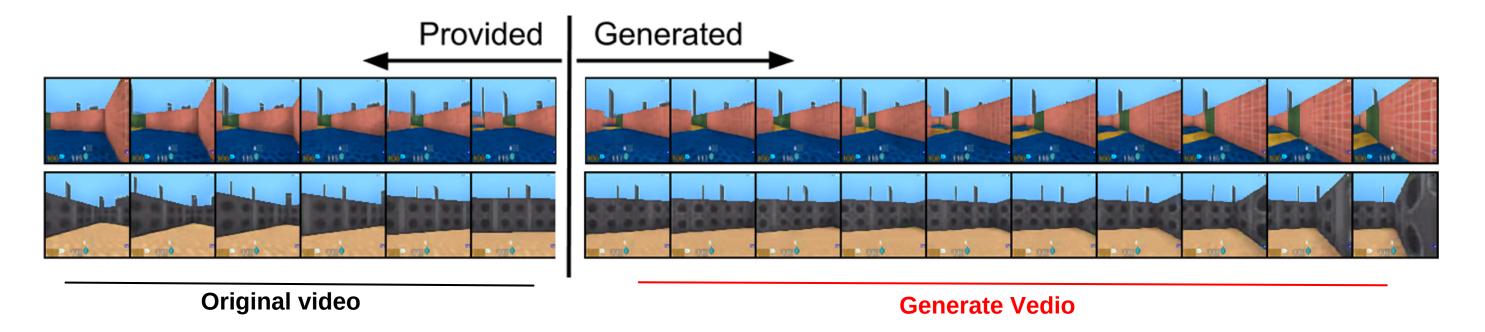
Result

1. Image reconstruction



Imagenet images

Imagenet image reconstruction


Result

2. Image generation

Result

3. Video generation

• Top: "move forward"

• Bottom: "move right"