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« Convolutional Neural Networks (CNNs) have been successfully applied to tackle problems such
as image, semantic segmentation or machine translation, where the underlying data
representation has a grid-like structure.
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e There have been several attempts in the literature to extend S
neural networks to deal with arbitrarily structured graphs. !

e Early work used recursive neural networks to process data W
represented in graph domains as directed acyclic graphs. score

e A recursive neural network is created by applying the same set
of weights recursively over a structured input, to produce a
structured prediction over variable-size input structures, by
traversing a given structure in topological order.

 In the simplest architecture, nodes are combined into parents
using a weight matrix and a non-linearity such as the tanh

hyperbolic function. l,...".!r }!i"ﬂfz
;
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Background A
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e A Graph Convolutional Network (GCN) extends the idea of convolution from regular grids (like
images) to graph-structured data.

e Input Representation: Each node v has a feature vector x. The graph is defined by an adjacency
matrix A.

e Neighborhood Aggregation (Message Passing): Each node updates its representation by
aggregating features from its neighbors (and often itself).

e There is an increasing interest in generalizing convolutions to the sranh domain. However, the
learned filters depends ~ '+ N a specific structure can

not be directly applied - H(E D = J(D I'EQAD I'IJZH(E)W(U)
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« The input to the layer is a set of h nodes with F features in each node. The layer produces a new
set of node features (of potentially different cardinality F’), as its output.
e In order to obtain sufficient expressive power to transform the input features into higher-level

features, a shared linear transformation, parametrized by a weight matrix, W, is applied to every
node.

concat/avg
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Wh;
. Self-attention is then performed on the nodes—a shared attentional mechanismg : R x R¥ — R
computes attention coefficients:

. - exp(e;;)
eij = a(Wh;, Wh;) a;; = softmax;(e;;) p(eij)
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Table 1: Summary of the datasets used in our experiments.

Cora Citeseer Pubmed PPI1
Task Transductive Transductive Transductive Inductive
# Nodes 2708 (1 graph) 3327 (1 graph) 19717 (1 graph) 56944 (24 graphs)
# Edges 5429 4732 44338 818716
# Features/Node 1433 3703 500 50
# Classes 7 6 3 121 (multilabel)
# Training Nodes 140 120 60 44906 (20 graphs)
# Validation Nodes 500 500 500 6514 (2 graphs)
# Test Nodes 1000 1000 1000 5524 (2 graphs)

o Utilize three standard citation network benchmark datasets—Cora, Citeseer and
Pubmed. In all these datasets, nodes correspond to documents and edges to
(undirected) citations. Node features correspond to elements of a bag-of-words
representation of a document.

e Each node has a class label.

e Following the transductive setup, the training algorithm has access to all of the nodes’
feature vectors.
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« Make use of a protein-protein interaction (PPl) dataset that consists of graphs

corresponding to different human tissues.

« The dataset contains 20 graphs for training, 2 for validation and 2 for testing.
Critically, testing graphs remain completely unobserved during training.

« The average number of nodes per graph is 2372. Each node has 50 features that
are composed of positional gene sets, motif gene sets and immunological

signatures.
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e For the transductive learning tasks, a two-layer GAT model was applied. The
first layer consists of 8 attention heads computing, F’, 8 features each (for a
total of 64 features), followed by an exponential linear unit (ELU) nonlinearity.

« The second layer is used for classification: a single attention head that computes
C features (where Cis the number of classes), followed by a softmax activation.

e For the inductive learning tasks, a three-layer GAT model was applied. Both
first 2 layers consist of 4 attention heads computing, F’, 256 features each (for a
total of 1024 features), followed by an ELU nonlinearity.

« The final layer is used for (multi-label) classification with 6 attention heads
computing 121 features each, that are averaged and followed by a logistic
sigmoid activation.
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Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed.
GCN-64" corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).
Transductive
Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
3elka '00€ 59.5% 60.1% 70.7%
59.0% 59.6% 71.7%
68.0% 45.3% 63.0%
67.2% 43.2% 65.3%
75.1% 69.1% 713.9%
75.7% 64.7% 17.2%
81.2% 69.8% 74.4%
81.5% 70.3% 79.0%
81.7 £ 0.5% — 78.8 £ 0.3%
G-CN—M* 81.4+05% 709+05% 79.0+03%
GAT (ours) 83.0+07% T725+0.7% 79.0+0.3%
BrAlIn Lab. )
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Results

Table 3: Summary of results in terms of micro-averaged F; scores, for the PPI dataset. GraphSAGE*
corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture.
Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention
mechanism (assigning same 1importance to each neighbor; GCN-like inductive operator).

Inductive

Method PPI1
Random 0.396
MLP 0.422
GraphSAGE-GCN (Hamilton et al | 0.500

0.598

0.612
GraphSAGE-pool ( 0.600
GraphSAGE” 0.768
Const-GAT (ours) 0.934 + 0.006
GAT (ours) 0.973 4+ 0.002
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Conclusion .
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e The graph attention networks (GATs) operate on graph-structured data.

« The graph attentional layer utilized throughout these networks is
computationally efficient, allows for assigning different importances to
different nodes within a neighborhood, and does not depend on knowing the
entire graph structure upfront.

e Potential improvements: able to handle larger batch sizes, extending the
method to perform graph classification instead of node classification, extending
the model to incorporate edge features would allow us to tackle a larger variety
of problems.
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