

Embedded EEG Feature Selection for Multi-Dimension Emotion Recognition via Local and Global Label Relevance

Subject : Feature Selection

name : 김지윤

I Autor

- Author: Xueyuan Xu
- works at the School of Artificial Intelligence,

Beijing Normal University

- Skills and Expertise: EEG, Feature Selection
- 11 times citation

Xueyuan Xu

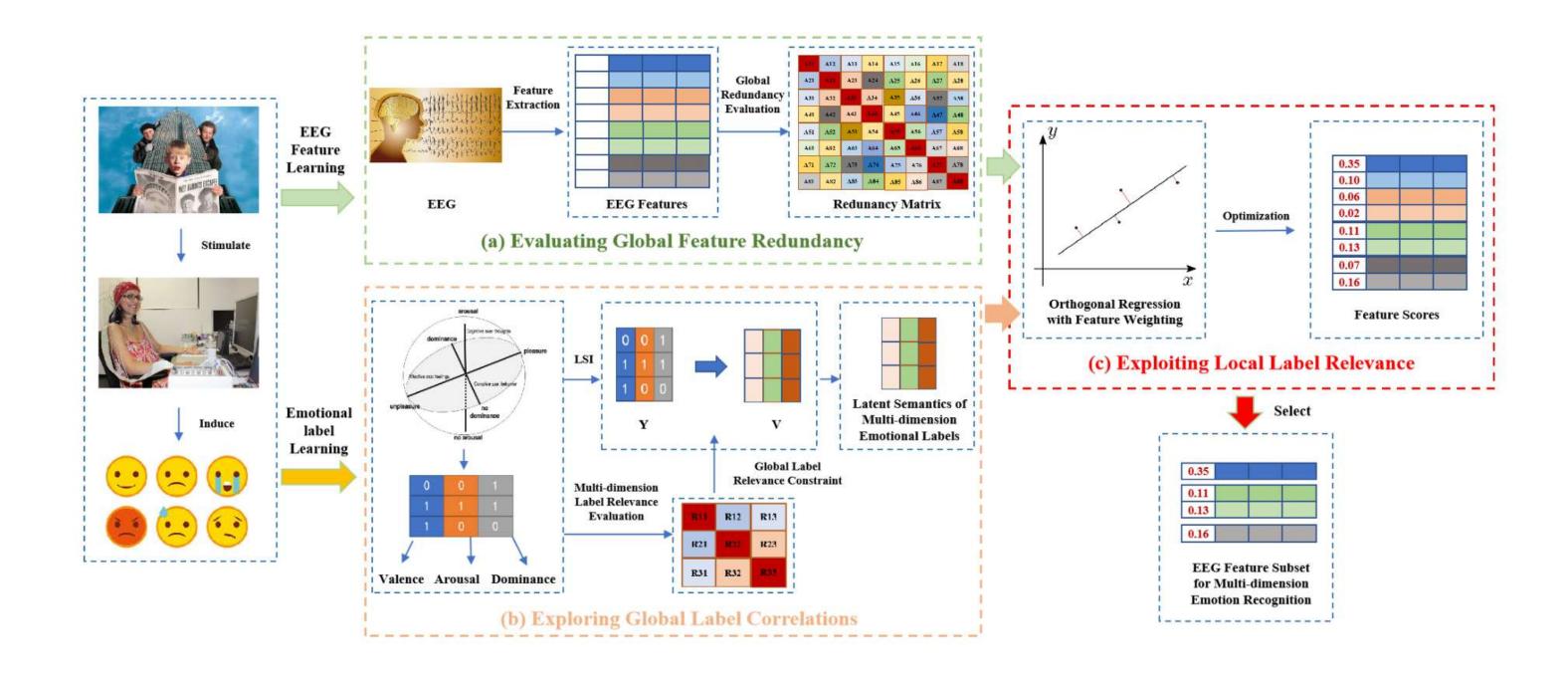
Beijing University of Technology
在 bjut.edu.cn 的电子邮件经过验证
EEG Machine Learning Affective computing

0.000	Total Control	
1		
1	25023	
Married A	Section 1	

标题	引用次数	年份
WSEL: EEG feature selection with weighted self-expression learning for incomplete multi- dimensional emotion recognition X Xu, L Zhuo, J Lu, X Wu [MM'24 Oral] Proceedings of the 32nd ACM International Conference on		2024
BLSAN: A Brain Lateralization-guided Subject Adaptive Network for Motor Imagery Classification F Wei, X Xu, Q Li, X Li, X Wu IEEE Signal Processing Letters 31, 2630 - 2634		2024
BDAN-SPD: A brain decoding adversarial network guided by spatiotemporal pattern differences for cross-subject MI-BCI F Wei, X Xu, X Li, X Wu IEEE Transactions on Industrial Informatics	3	2024
Embedded Multi-label Feature Selection via Orthogonal Regression X Xu, F Wei, T Jia, L Zhuo, F Nie, X Wu arXiv preprint arXiv:2403.00307		2024
Embedded EEG Feature Selection for Multi-Dimension Emotion Recognition via Local and Global Label Relevance X Xu, F Wei, T Jia, L Zhuo, H Zhang, X Li, X Wu IEEE Transactions on Neural Systems and Rehabilitation Engineering 32, 514 - 526	11	2024

II Introduction

- Current EEG-based emotion recognition studies transform multi-dimension emotional labels into single-dimension labels.
- Then implement used single-label feature selection methods to search feature subsets, which ignores the relations between different emotional dimensions.
- Also, EEG features are often high-dimensional and inevitably contains irrelevant, redundant, and noise information, which can easily deteriorate the emotion recognition performance due to the relatively small amount of EEG samples.

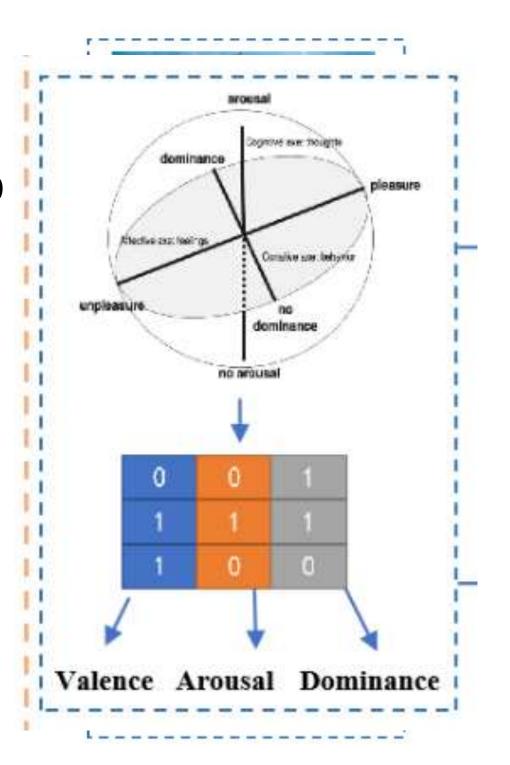


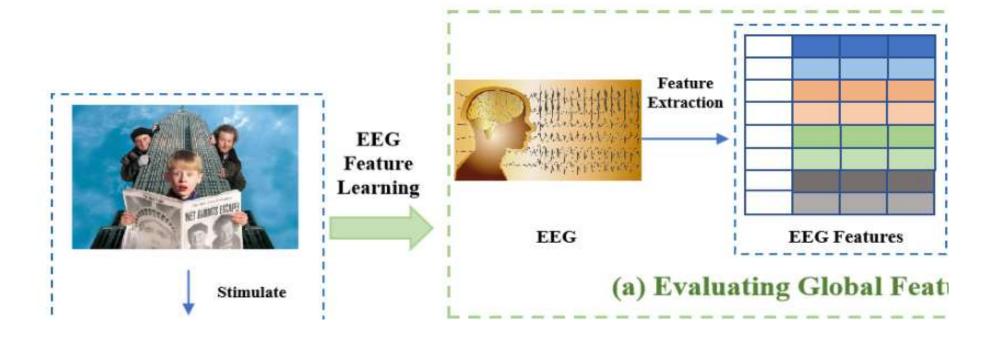
Database(EEG Dataset) Description

All the databases(DREAMER, DEAP, HDED) adopt the VAD model(valence-arousal-dominance model) to represent human emotions.

TABLE I
COMPARISONS AMONG THE THREE EEG DATABASES

Data set	DREAMER	DEAP	HDED
Channel no.	14	32	90
Subject no.	23	32	16
Video no.	18	40	12
Sample no.	414	1280	192
Stimulus materials	film clips	music videos	film clips



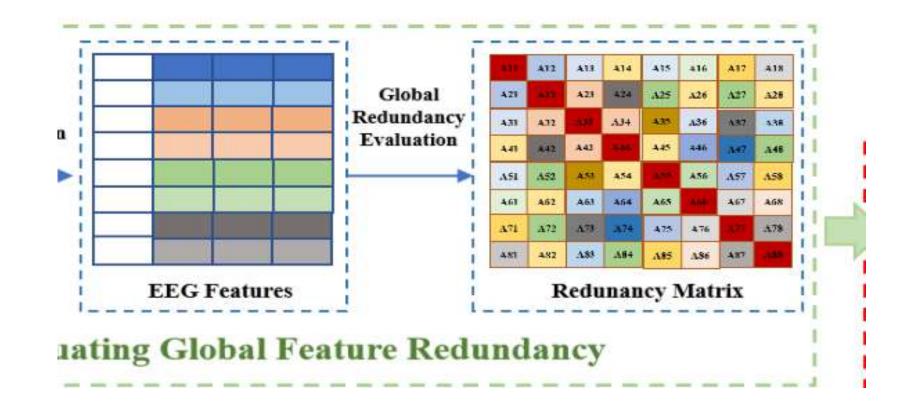


Feature Extraction From EEG Recordings

EEG signals were filtered out the noise by 1-50 Hz band-pass filter. ICA(Independent Component Analysis) was then used to suppress muscular and eye movement artifacts.

The following thirteen kinds of features were extracted for EEG-based multi-dimension emotion recognition:

NSI, HOC, spectral entropy, shannon entropy, CO complexity, DE, AP, AP_B/AP_θ , AHTIMF, IPHTIMF, DASM, RASM, FC



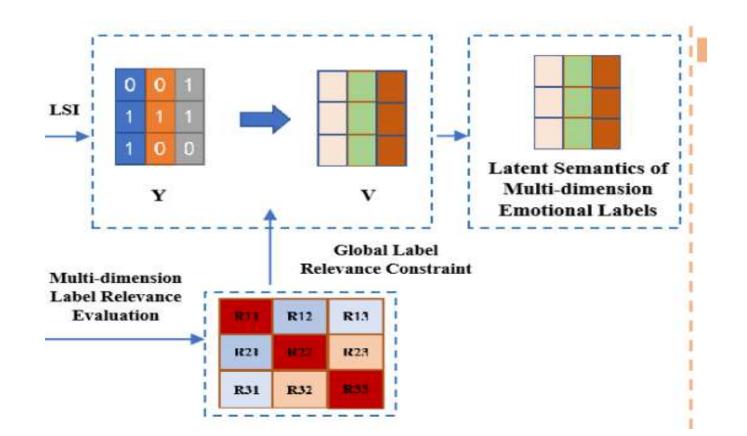
$$A_{i,j} = \left(O_{i,j}\right)^2 = \left(\frac{\boldsymbol{f}_i^T \boldsymbol{f}_j}{\|\boldsymbol{f}_i\| \|\boldsymbol{f}_j\|}\right)^2$$

$$\Omega(\Theta) = \boldsymbol{\theta}^T A \boldsymbol{\theta}$$
 s.t. $\boldsymbol{\theta}^T \mathbf{1}_d = 1, \boldsymbol{\theta} \ge 0$

Evaluating Global Feature Redundancy

A global feature redundancy matrix A assess the correlations among the EEG features. It is a matrix that represents the correlation between f_i and f_j through cosine similarity.

The $\Omega(\Theta)$ learns the weights of features and removes redundant features by controlling them so that redundant features do not have high weights.

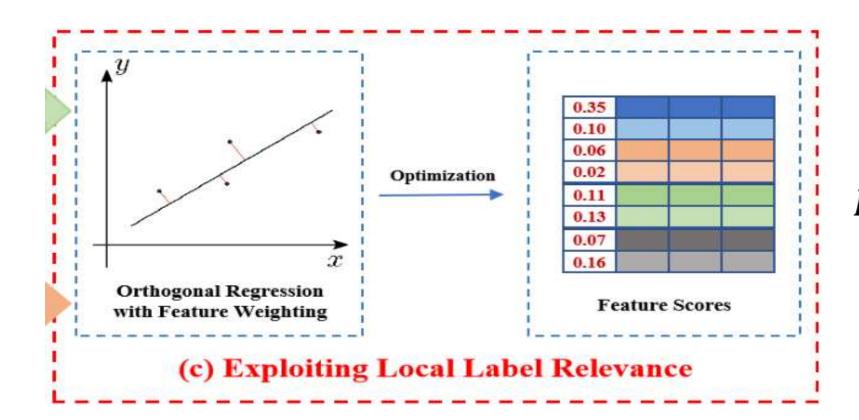


$$C(Y, V) = \|Y - V\|_F^2 + \beta \operatorname{tr} \left(RV^T V \right)$$
$$\sum_{i=1}^k \sum_{j=1}^k R_{ij} \boldsymbol{v}_{.i}^T \boldsymbol{v}_{.j}$$

Exploring Global Label Correlations

For similar labels, v_i and v_j are adjusted to become closer, while for dissimilar labels, they are adjusted to move farther apart.

This process considers the global relationships to effectively reflect the correlations between emotion labels.



$$F(X, W, \Theta, V) = \left\| X^T \Theta W + \mathbf{1}_n \boldsymbol{b}^T - V \right\|_F^2 + \eta tr \left(V^T L V \right)$$
s.t. $W^T W = I_c, \boldsymbol{\theta}^T \mathbf{1}_d = 1, \boldsymbol{\theta} \ge 0$ (2)

Exploting Local Label Relevance

By projecting the original data into a lower-dimensional space through W, the differences with V are minimized, thereby incorporating the information from (a) and (b).

Additionally, the graph Laplacian matrix L ensures that local structures are preserved, achieved feature selection.

IV Experimental Setup

 Trials were not segmented into several segments to increase the sample size for EEG feature extraction.

TABLE I
COMPARISONS AMONG THE THREE EEG DATABASES

Data set	DREAMER	DEAP	HDED
Channel no.	14	32	90
Subject no.	23	32	16
Video no.	18	40	12
Sample no.	414	1280	192
Stimulus materials	film clips	music videos	film clips

- A cross-subject experiment setting was conducted.
- To avoid possible bias, 50 independent realizations were conducted and then the average was regarded as the final emotion recognition results.

V Performance comparison – single dimension

TABLE III
THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF KNN ON 3 BENCHMARK DATASETS

Methods					Discrete La	bels			
	DREAMER			DEAP			HDED		
	Valence	Arousal	Dominance	Valence	Arousal	Dominance	Valence	Arousal	Dominance
mRMR	60.16	73.87	77.74	61.48	64.77	64.64	86.87	63.97	68.45
ReliefF	63.71	72.34	77.42	58.26	63.02	64.24	58.10	68.97	68.79
CMIM	58.63	74.03	76.85	59.43	62.71	63.80	87.93	65.00	68.28
RFS	62.58	73.95	77.26	59.90	64.97	64.71	86.72	67.41	69.48
SDFS	61.13	73.71	78.06	56.72	62.42	62.42	82.93	66.72	68.45
ESFS	64.68	74.03	77.66	59.77	63.28	64.24	85.00	64.48	64.48
RPMFS	62.74	71.94	77.82	63.36	63.05	65.05	55.86	62.59	63.97
FSOR	62.18	71.77	77.50	60.08	64.11	65.18	86.72	64.31	66.72
SCMFS	60.48	70.97	76.77	62.24	63.52	65.49	58.28	57.93	65.17
GRRO	63.79	75.48	79.27	63.93	65.76	66.98	93.62	77.76	74.14
MDFS	65.81	75.81	79.35	63.91	65.47	66.54	93.79	79.31	73.97
MFS_MCDM	60.48	71.85	76.85	58.67	65.00	65.60	72.76	62.76	69.31
MGFS	61.94	73.06	77.66	61.85	64.32	64.87	92.24	76.21	70.86
GRMOR	61.77	75.16	79 44	63.83	65.13	65.55	90.34	69.83	72.07
EFSMDER	69.68	78.37	83.89	67.08	66.35	69.40	95.69	81.03	76.17

TABLE IV

THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF SVM ON 3 BENCHMARK DATASETS

Methods Vale				1	Discrete La	bels			
	DREAMER			DEAP			HDED		
	Valence	Arousal	Dominance	Valence	Arousal	Dominance	Valence	Arousal	Dominance
mRMR	61.13	74.52	76.37	56.38	62.34	61.85	71.72	56.72	62.59
ReliefF	60.16	71.37	77.18	54.87	60.52	60.10	69.66	60.86	59.66
CMIM	59.44	71.85	75.81	55.89	62.71	61.82	67.41	58.28	58.10
RFS	61.45	72.90	74.44	57.66	64.82	65.00	79.31	64.48	67.59
SDFS	60.89	72.82	74.92	54.79	62.24	62.01	79.48	62.41	59.31
ESFS	59.76	70.97	76.29	57.89	63.10	63.83	71.03	57.41	59.48
RPMFS	58.55	73.71	76.77	57.99	62.66	62.68	65.17	61.21	64.31
FSOR	60.48	71.94	76.21	60.21	62.50	62.55	73.97	62.41	60.17
SCMFS	60.56	72.58	76.61	56.80	63.44	64.66	61.55	53.10	56.72
GRRO	63.15	74.19	78.79	60.78	63.82	65.76	83.45	68.62	69.48
MDFS	63.31	73.79	79.84	62.42	64.49	66.07	83.79	71.38	70.34
MFS_MCDM	57.34	70.08	77.42	59.38	62.86	64.14	70.69	68.28	64.14
MGFS	58.95	71.69	75.65	59.79	63.72	63.54	81.38	62.24	62.59
GRMOR	62.18	73.31	78 39	60.94	64 38	65.47	78.62	67.76	68.62
EFSMDER	66.35	76.48	82.16	65.35	66.03	68.89	86.72	73.62	73.44

TABLE V
ACCURACY (%) COMPARISON WITH EXISTING WORKS
ON THE DEAP DATASET

Studies	Valence	Arousal
Lew et al. [44]	56.78	56.60
Pandey et al. [45]	62.50	61.25
Rayatdoost et al. [46]	59.22	55.70
Pandey et al. [47]	61.50	58.50
Li et al. [48]	64.20	58.40
Miguel et al. [49]	64.00	59.00
Li et al. [50]	62.66	-
She et al. [51]	65.59	=
He et al. [52]	64.33	63.25
Our work	67.08	66.35

V Performance comparison—multi dimension

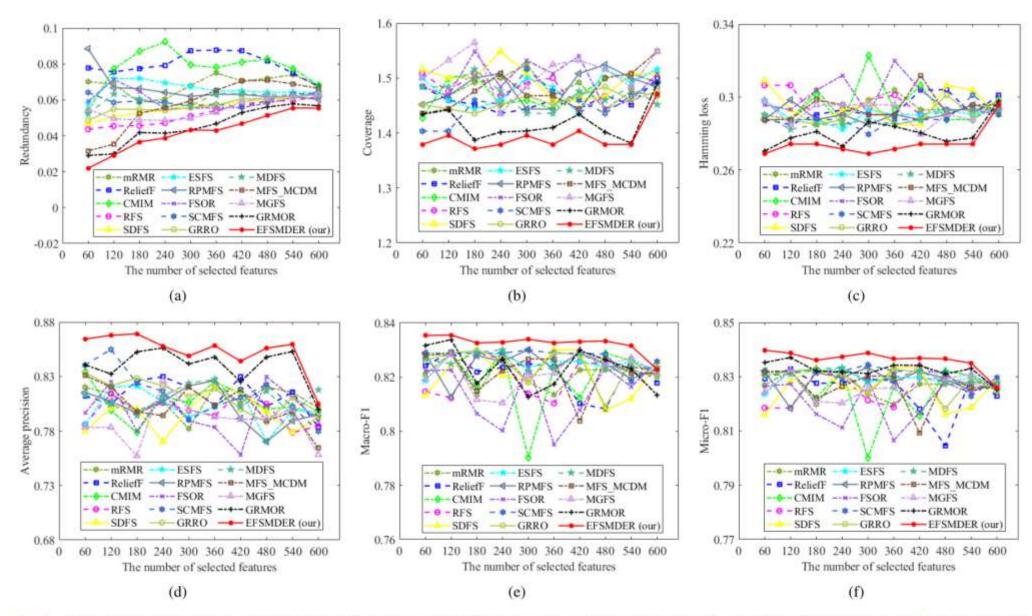


Fig. 2. Multi-dimension emotion classification performance with different number of selected features on the DREAMER data set: (a) Redundancy; (b) Coverage; (c) Hamming loss; (d) Average precision; (e) Macro-F1; (f) Micro-F1.

TABLE VI
THE COMPARISONS OF AVERAGE CLASSIFICATION ACCURACY (%) OF ML-KNN ON 3 BENCHMARK DATASETS

Methods	Multi-dimension Labels					
Methods	DREAMER	DEAP	HDED			
mRMR	82.02	82.05	90.17			
ReliefF	81.19	79.64	74.36			
CMIM	83.45	80.28	92.95			
RFS	78.57	82.39	87.18			
SDFS	77.98	79.11	91.03			
ESFS	78.57	79.90	93.16			
RPMFS	81.55	82.54	71.15			
FSOR	79.64	79.98	93.59			
SCMFS	84.05	82.16	91.45			
GRRO	83.33	80.92	90.81			
MDFS	81.31	83.26	95.73			
MFS_MCDM	83.10	79.75	80.77			
MGFS	78.33	82.88	88.03			
GRMOR	81.07	81.86	92.31			
EFSMDER	86.43	84.80	97.86			

VI Result

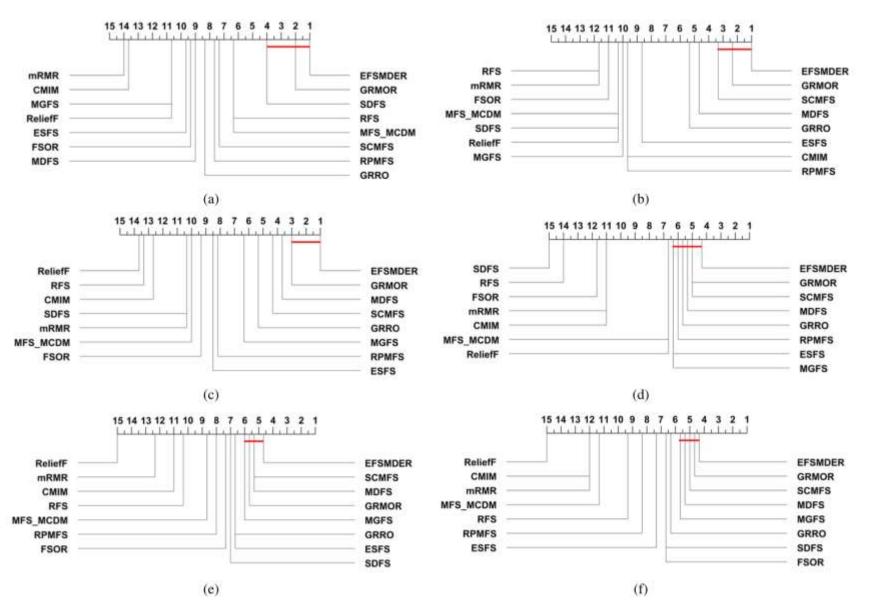
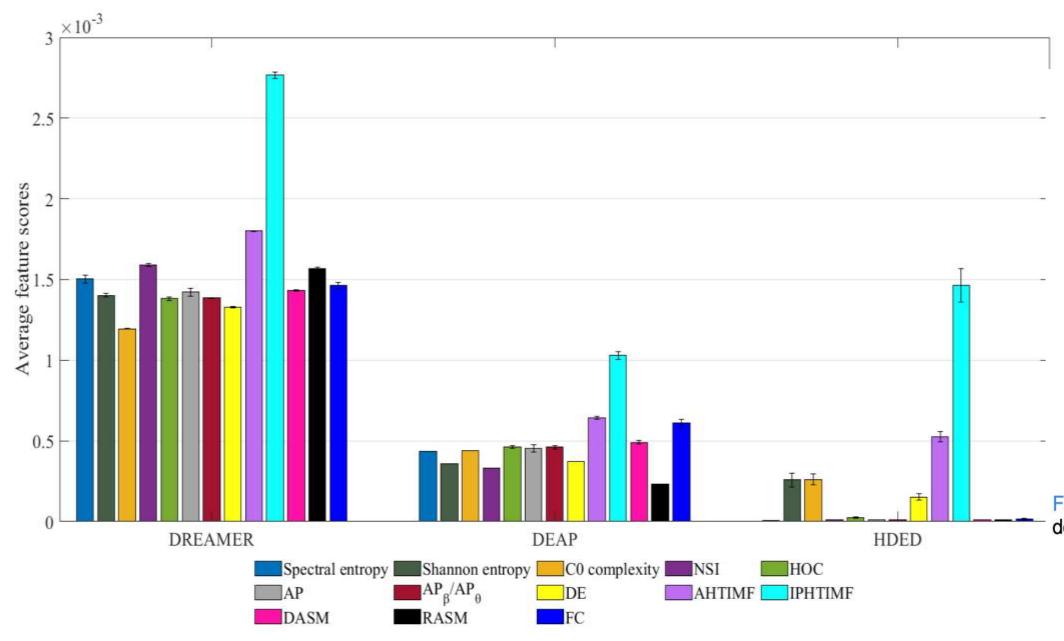


Fig. 5. The Nemenyi test results (CD = 12.3830, significance level $\alpha = 0.05$): (a) Redundancy; (b) Coverage; (c) Hamming loss; (d) Average precision; (e) Macro-F1; (f) Micro-F1.

- (1) Multi-dimension emotional labels help in uncovering latent semantic information.
- 2) Important to remove redundant information.
- (3) Global improves feature selection.

VII Discussion



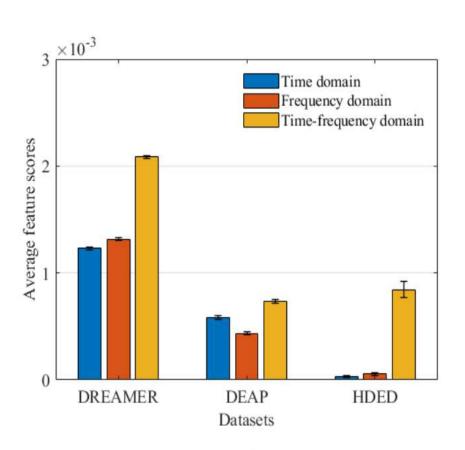


Fig. 9. Average feature scores of EEG features extracted from the time domain, frequency domain, and time-frequency domain.

THANK YOU