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Imagine your model normally thinks using 32-bit float numbers (very precise, like
using a microscope)
Quantization forces it to think using 8-bit integers (rougher, like using reading
glasses).

   Why it is important?
Models become smaller (4× smaller)

Models run faster, especially on mobile/embedded/chips

Power consumption becomes much lower

What is Quantization?



Quantization Fundamentals and Hardware
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1.Hardware background
Describe a typical neural network inference accelerator: matrix-vector multiply (MAC) units, accumulators. for eg,
processing elements, accumulators. 

Hardware Operation: Neural network accelerators are optimized for Multiply-Accumulate (MAC) operations. Using low-bit
fixed-point representations like INT8 reduces the size and energy consumption of MAC operations and data transfer.

To move from floating-point to the efficient fixed-point operations, we need a scheme for converting floating-point
vectors to integers.



Figure 1: A schematic overview of matrix-multiply logic in neural network accelerator
hardware.
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Figure 2: A schematic of matrix-multiply logic in an neural network accelerator for quantized
inference.
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Quantization Fundamentals and Hardware
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2. Uniform Affine Quantization: Uniform affine quantization, also known as asymmetric
quantization.

It is defined by the scale factor (s), zero-point (z), bit-width (b)

Compare symmetric quantization (zero-point = 0) vs asymmetric.

The quantized value is defined by the function: 

Quantization granularity: Per‐tensor vs per‐channel vs per‐group. 
Pros/cons: Per‐channel can improve accuracy but increases hardware complexity



Experiments
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There are two types of quantization techniques. 

Post-Training Quantization

Quantization-aware training



1.Post-Training Quantization
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Take a pretrained FP32 model and quantize weights/activations with no or
minimal retraining. 

Requires little or no calibration data. 

Advantage: lightweight, low engineering effort, fast deployment.

Limitation: Works well typically for 8-bit, but for lower bit widths (e.g., 4-bit) the
accuracy gap to FP32 may increase. 

Pipeline overview: range‐setting → optional corrections (equalization, bias
correction) → final quantized model.



Post-Training Quantization Pipeline
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Quantization range setting

Cross-Layer Equalization

Bias correction

AdaRound

Debugging

Figure 3: Standard PTQ pipeline



2. Quantization-aware training
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During training (or fine-tuning) simulate quantization in the forward pass so the

network adapts to quantization noise. 

Requires labelled data, more computing effort than PTQ. 

Advantage: Enables lower bit widths (e.g., 4-bit or less) with competitive accuracy.

Pipeline overview: Insert quantizer blocks in training graph (after

weights/activations) → train/fine-tune to compensate for quantization effects →

deploy quantized model.



Quantization-Aware Training Pipeline
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Quantizer Simulation 

Batch normalization 

Initialization 

Figure 4: Standard QAT pipeline



3. Simulating Quantization on Floating-Point Hardware
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1.In real deployment, neural networks run on fixed-point
hardware, such as microcontrollers or low-power

accelerators.

2.But during training, we use GPUs/CPUs which operate

in floating-point.
3.To evaluate how well the model would run on a

quantized device, it simulate quantized behavior on

floating-point hardware.

4.Quantization Simulation is a key part of Quantization-
Aware Training (QAT). Fig 5(a) Diagram for quantized on-

device inference with fixed-point
operations.

Fig 5(b) Simulated quantization using
floating-point operations



Experiments & Key Results for PTQ
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Table 1. Performance of our
standard PTQ pipeline for
various models and tasks. 



Experiments & Key Results for QAT
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Table 2. Performance
of our standard QAT
pipeline for various
models and tasks. 



Conclusion
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Deep learning is widely deployed in edge devices, increasing the need for fast and
power-efficient inference.
Quantization reduces floating-point models to fixed-point formats, enabling lower
latency and energy consumption.
Two main quantization approaches: Post-Training Quantization (PTQ) and Quantization-
Aware Training (QAT).
PTQ offers a lightweight pipeline achieving near-FP32 accuracy for 8-bit and even 4-bit
weights.
QAT simulates quantization during training, achieving more aggressive activation/weight
quantization with minimal accuracy loss.



Thank You!!
Any question?
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