
A White Paper on Neural Network Quantization

1

Date: 2025-11-24

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei
Bondarenko, Mart van Baalen, Tijmen Blankevoort

Qualcomm AI Research

Author

2

Background

3

Imagine your model normally thinks using 32-bit float numbers (very precise, like
using a microscope)
Quantization forces it to think using 8-bit integers (rougher, like using reading
glasses).

 Why it is important?
Models become smaller (4× smaller)

Models run faster, especially on mobile/embedded/chips

Power consumption becomes much lower

What is Quantization?

Quantization Fundamentals and Hardware

4

1.Hardware background
Describe a typical neural network inference accelerator: matrix-vector multiply (MAC) units, accumulators. for eg,
processing elements, accumulators.

Hardware Operation: Neural network accelerators are optimized for Multiply-Accumulate (MAC) operations. Using low-bit
fixed-point representations like INT8 reduces the size and energy consumption of MAC operations and data transfer.

To move from floating-point to the efficient fixed-point operations, we need a scheme for converting floating-point
vectors to integers.

Figure 1: A schematic overview of matrix-multiply logic in neural network accelerator
hardware.

5

Figure 2: A schematic of matrix-multiply logic in an neural network accelerator for quantized
inference.

6

Quantization Fundamentals and Hardware

7

2. Uniform Affine Quantization: Uniform affine quantization, also known as asymmetric
quantization.

It is defined by the scale factor (s), zero-point (z), bit-width (b)

Compare symmetric quantization (zero-point = 0) vs asymmetric.

The quantized value is defined by the function:

Quantization granularity: Per‐tensor vs per‐channel vs per‐group.
Pros/cons: Per‐channel can improve accuracy but increases hardware complexity

Experiments

8

There are two types of quantization techniques.

Post-Training Quantization

Quantization-aware training

1.Post-Training Quantization

9

Take a pretrained FP32 model and quantize weights/activations with no or
minimal retraining.

Requires little or no calibration data.

Advantage: lightweight, low engineering effort, fast deployment.

Limitation: Works well typically for 8-bit, but for lower bit widths (e.g., 4-bit) the
accuracy gap to FP32 may increase.

Pipeline overview: range‐setting → optional corrections (equalization, bias
correction) → final quantized model.

Post-Training Quantization Pipeline

10

Quantization range setting

Cross-Layer Equalization

Bias correction

AdaRound

Debugging

Figure 3: Standard PTQ pipeline

2. Quantization-aware training

11

During training (or fine-tuning) simulate quantization in the forward pass so the

network adapts to quantization noise.

Requires labelled data, more computing effort than PTQ.

Advantage: Enables lower bit widths (e.g., 4-bit or less) with competitive accuracy.

Pipeline overview: Insert quantizer blocks in training graph (after

weights/activations) → train/fine-tune to compensate for quantization effects →

deploy quantized model.

Quantization-Aware Training Pipeline

12

Quantizer Simulation

Batch normalization

Initialization

Figure 4: Standard QAT pipeline

3. Simulating Quantization on Floating-Point Hardware

13

1.In real deployment, neural networks run on fixed-point
hardware, such as microcontrollers or low-power

accelerators.

2.But during training, we use GPUs/CPUs which operate

in floating-point.
3.To evaluate how well the model would run on a

quantized device, it simulate quantized behavior on

floating-point hardware.

4.Quantization Simulation is a key part of Quantization-
Aware Training (QAT). Fig 5(a) Diagram for quantized on-

device inference with fixed-point
operations.

Fig 5(b) Simulated quantization using
floating-point operations

Experiments & Key Results for PTQ

14

Table 1. Performance of our
standard PTQ pipeline for
various models and tasks.

Experiments & Key Results for QAT

15

Table 2. Performance
of our standard QAT
pipeline for various
models and tasks.

Conclusion

16

Deep learning is widely deployed in edge devices, increasing the need for fast and
power-efficient inference.
Quantization reduces floating-point models to fixed-point formats, enabling lower
latency and energy consumption.
Two main quantization approaches: Post-Training Quantization (PTQ) and Quantization-
Aware Training (QAT).
PTQ offers a lightweight pipeline achieving near-FP32 accuracy for 8-bit and even 4-bit
weights.
QAT simulates quantization during training, achieving more aggressive activation/weight
quantization with minimal accuracy loss.

Thank You!!
Any question?

17

