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01 Author & Journal (U-Net) BrAIn Lab.(5)

‘Brain and Artificial Intelligence Lab.

Homepage of Olaf Ronneberger

apl. Prof. Dr. Olaf Ronneberger
Google DeepMind

London, UK

Twitter: @ ORonneberger

and

U-net: Convolutional networks for biomedical image segmentation 126184

O Ronneberger, P Fischer, T Brox
International Conference on Medical image computing and computer-assisted ...

D-7911 Highly accurate protein structure prediction with AlphaFold 44506 2021
J Jumper, R Evans, A Pritzel, T Green, M Figumov, O Ronneberger, ...
Email: nature 596 (7873), 583-589

Accurate structure prediction of biomolecular interactions with AlphaFold 3 10679 2024
J Abramson, J Adler, J Dunger, R Evans, T Green, A Pritzel, ...
Nature 630 (8016), 493-500

3D U-Net: learning dense volumetric segmentation from sparse annotation 10293 2016
O Cicek, A Abdulkadir, SS Lienkamp, T Brox, O Ronneberger
Intermational conference on medical image computing and computer-assisted ...

Protein complex prediction with AlphaFold-Multimer 3691 2021
R Evans, M O'Neill, A Pritzel, N Antropova, A Senior, T Green, A Zidek, ..
biorxiv, 2021.10. 04.463034

Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context 3307 2024
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530



01 Author & Journal (BERT) BrAIn Lab.&5

Brain and Artificial Intelligence Lab.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin ~ Ming-Wei Chang  Kenton Lee  Kristina Toutanova Computer Science -

North American Chapter of the Association for.. -+ 2019

TLDR A new language representation model, BERT, designed to pre-train deep bidirectional
representations from unlabeled text by jointly conditioning on both left and right context in all layers,
which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide
range of tasks.Expand

Jall:ub DE"H"“I‘I EE107456 @ 21679 PDF ACL M Save A& Alert &k Cite

Software Engineer at Google - I — -
&R Natural Questions: A Benchmark for Question Answering Researc

0= YA H YEHE - ety Q Q g

T. Kwiatkowski  J. Palomaki +15authors Slav Petrov Computer Science -

Transactions of the Association for Computational... - 1 August 2019

TLDR The Natural Questions corpus, a question answering data set, is presented, introducing robust
metrics for the purposes of evaluating question answering systems; demonstrating high human upper
bounds on these metrics; and establishing baseline results using competitive methods drawn from
related literature. Expand

GE 4040 @ 511 PDF HEACL RSave & Alert &k Cite

Scaling Instruction-Finetuned Language Models
Hyung Won Chung  LeHou +29 authors  Jason Wei Computer Science -

Journal of machine learning research - 20 October 2022

TLDR It is found that instruction finetuning with the above aspects dramatically improves performance
on a variety of model classes (PaLM, T5, U-PaLM), prompting setups, and evaluation benchmarks (MMLU,
BBH, TyDiQA, MGSM, open-ended generation). Expand

GE3,773 @ 411 PDF W arXiv W Save & Alert &k Cite



02 Several Challenges for Computer Vision BrAIn Lab.&3

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

i )

GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
w TREE, SKY Vi O V.
' Y Y
Mo objects, just pixels Single Object Multiple Object
“Pixel-wise classification” “Bounding box localization “Object Detection +

+ classification” Semantic Segmentation”



02 Several Challenges for Computer Vision BrAIn tab.B

Semantic
Segmentation

GRASS, :
.  TREE, SKY

Y
No objects, just pixels

“Pixel-wise classification”



02 Segmentation Challenge — Sliding Window BrAIn Lab. &

Brain and Artificial Intelligence Lab.

Semantic Segmentation ldea: Sliding Window

Independent Input

Classify for

Classify center )
one pixel

Extract pateh|  biye| with CNN

Full image
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Farabet et al, "Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

v



02 Segmentation Challenge — Sliding window BrAIn Lab. ()

Pixel-wise feature map




02 Segmentation Challenge — Sliding window BrAIn Lab. ()

Softmax

Probability map Vs. Ground Truth

| /A
- H
e x: specific pixel coordinate

e (x): Activation value in x p *
. W W
(in k channel) Vs
e whole Class T
Cross Entropy
Loss function
| 44 %
— ' mm) “Total Loss
H
K




02 Segmentation Challenge — Sliding window BrAIn Lab. ()

Drawbacks

1. Shift 1 pixel each time for Probability map(model result)
2.Redundancy computation about overlapping pixels

3.Context & Localization info Trade-off
(because of max pooling)

4. Cannot use localization info etficiently (because
of independent input)



02 Segmentation Challenge - FCN BrAIn Lab.

Brain and Artificial Intelligence Lab.

Attributes
forward /inference
B ——————— . .
T [y e—— 8 1.Contracting path & Expansive Path
3
> 2. Whole Image goes into the input
9,
e —61«4 A 3.No Fully connected layer (replaced
s sk 10 p O Q> with 1*1 convolution layers)

AT T 4. Typically implemented by VGG-Net

E 5.Using “Skip Connection + Addition”
21

11




02 Segmentation Challenge - FCN

1al Intelligence Lab.

1 AFtitic

BrAIn Lab.&5)

Braim anmi

VGG16

IndinQ

replaced FC layers with  7%7
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will be mentioned after few slides
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02 Segmentation Challenge - FCN BrAIn Lab. &)

&) o oy o )
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] | | |

224x224  112x112 96x56 28x28 14x14 7

Input image Feature map Faatura map Feature map Feature map Feature map

1.7*7 convolution layer: resolution info fusion (fc layer role)
2.1*1 convolution layer: channel info fusion (fc layer role)

3.1*1 convolution layer: change the number of channels (same with class numbers)

13



02 Segmentation Challenge - FCN BrAlIn Lab. &5

2: Itis 77
) EEHE‘E‘EE HEE

14x14
At Feature map

651 Feature map 7x7

FCN-32s FCN-16s FCN-8s Ground truth

Fixed Bilinear interpolation

_ Trainable Backwards convolution




02 Segmentation Challenge - FCN32s BrAIn Lab. &3

FCN-32s

JHERE zi:zzé‘ﬁ,sszisné’jéé%
3182/ 18(3(2["13(8]8| 2['13[3[8|2| 18|8|S(2 B |z 15 s

e 32X Upsampling (Transposed convolution layer)
e This version don’t use skip connection and addition

e Image quality is poor



02 Segmentation Challenge - FCN16s BrAIn Lab. &

‘Brain and Artificial Intelligence Lab.

651 Feature map 7x7

14x14 Purpose for
4 Feature map correcting
channel

numbers

14x14 14x14
Feature {T\' Feature
Map Map
4-1% |[Feature map
16X Upsampling
j FCN-16s Ground truth
L6 wpsampled I /

prediction (FON-16s)

Fixed Bilinear interpolation

- Trainable Backwards convolution .

16



(03 U-Net vs. FCN BrAIn Lab.&

Brain and Artificial Intelligence Lab.

o Attributes
128 64 g4 2
input
_ output
image: || **1*| segmentation .
tile & r_-: Ej E-Z map 1. NO paddlng
Ias ] 2.Expansive Path is more complicated

250 18

- H;l 3.Using Concatenation (not Addition)
|

512 256

-5 [eflefl T 4. Using tile image (similar with patch)
24 i.:llr:'Fl ':: .

~ copy and crop

Bl ........- § max pool 2x2
: & @ 4 up-conv 2x2
= cONv 1x1

17



03 U-Net vs. FCN

1.No padding
2.Expansive Path is more complicated
3.Using Concatenation (not Addition)

4. Using tile image (similar with patch)

BrAln Lab. &

. X .,.' 4 |, (Oyerlap Tile)
inmgess egwminganore

resolutlon image.

TEP1,: m}gtAd Inpﬁ ”UIJ ut
=1 "1 —'——n—%

tnlgﬁl&inittlﬂckii@(p&lamless

» o Natthisng fokl ¥¢3cdostiool utnegdayer

o Fingmmlointage aithr dearinhpmgo use
thetbencatenated feature map and

o biighasad¥enlappimapach other, the final
segamantation map(final result) would
be seamless

18



03 U-Net. Training BrAIn Lab.&

Brain and Artificial Intc!ligencE Lab.

Probability map Vs. Ground Truth

G4 B4
128 64 54 2
input Sk Softmax / /
image _
1:igl il i ** ™ segmentation - H H
¢ 2l & & 5 map
o e 2 . =
B ] 2 = K K
¥ 126 128 l
256 128
-
Sk '
512 256

g = CONV 3x3, RelLU
= copy and crop

[x ]

=
=]

§ max pool 2x2

4 up-conv 2x2
Correcting Channel numbers

= Class numbers

19



03 U-Net. Training BrAIn Lab.&

Brain and Artificia I_Intelligencﬁé b.

Cross Entropy

128 64 g4 2

_Input output /

""S segmentation

map
* 128 128 I W

256 128

=l BB
K zLLl
o '

"' 256 256

3
&
@
¥
¥

‘
=

ag0xas ¥
sag %388 W

492 ¥ 392

572 % 572
570 % 570
568 x 568

284%

512 256

= CONV 3x3, RelLU
= copy and crop

§ max pool 2x2

4 up-conv 2x2
= CONYV 1x1
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03 U-Net. Training BrAIn Lab.&

Brain and Artificial Intelligence Lab.

1 64 6d
178 64 64 2
input — /—
i output /
image _
e ||~ ™1™ 1™ segmentation > .
2l 3 o 5 map

aleof g NEEE

x| = 2l A A3 ” ’

|7

\%% A%
256 128
512 256 I
3 “""I"I = cONY 3x3, RelLU
SL M Al B
. '“ = - copy and crop
102: 512
. . § max pool 2x2
' & @ 4 up-conv 2x2 .
— conv 1x1 Concept:

“weight map + cross entropy”

21



03 U-Net. Training BrAIn Lab.

ain and Artificial Intelligence Lab.

input 3 A
' | output
image ; .

i ™1™ 1™ segmentation ,

A & & map

NN

388 » 288

]tﬂt 3 D’[H] = conv 3x3, RelLU
NENEY s s N N copy and crop
> Y e ¥ max pool 2x2
R T $ 3 B 4 up-conv 2x2
= CONv 1x1

e Xx: specific pixel coordinate
e w(x): weighted map
e true class probability in x

22
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“For class imbalance and importance of segmentation border”

23



03 U-Net. Training BrAInLab@

Weight map looks like weird...

“How we already know about the pixel-wise class before training?”
_|_

“How we already know about the border pixels?”



03 U-Net. Training BrAInLab@

Answer is quite simple

“It’s already computed about ground truth before training ”
-+

“Don’t use weight map at inference time”



(03 U-Net. Training BrAln Lab. &)

‘“How about channels?”

Duplicate weight map for Cross Entropy




03 U-Net. Augmentation & Initialization BrAIn Lab. &3

He Initialization

(a) Original (b) Deformed

Fig. 3: Effects of performing elastic deformation on a mam-
mogram.

27



()03 U-Net. Result

BrAIn Lab. &

‘Brain and Artificial Intelligence Lab.

Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted

Nerve cell membrane segmentation

by warping error.

Rank Group name Warping Error Rand Error Pixel Error
** human values ** 0.000005 0.0021 0.0010

1. u-net 0.000353 0.0382 0.0611

2. DIVE-SCI 0.000355 0.0305 0.0584

3. IDSIA [1] 0.000420 0.0504 0.0613

4. DIVE 0.000430 0.0545 0.0582

10. IDSIA-SCI 0.000653 0.0189 0.1027

28



()03 U-Net. Result

BrAIn Lab.&5

Brain and Artificial Inicltigencgiab.

Rand error analyze object
separation for random two

pixels
Rank Group name Warping Error Rand Error Pixel Error
** human values ** 0.000005 0.0021 0.0010
1. u-net 0.000353 0.0382 0.0611
2. DIVE-SCI 0.000355 0.0305 0.0584
3. IDSIA [1] 0.000420 0.0504 0.0613
4. DIVE 0.000430 0.0545 0.0582
10. IDSIA-SCI 0.000653 0.0189 0.1027

Warping error
analyze cell
segmentation

29

Analyze model output
per pixel with ground
truth



03 U-Net. Result BrAln Lab@%?_

Brain and Artificial IntcltigencE Lab.

Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted

by warping error. ‘)
o

Rank Group name Warping Error | Rand Error Pixel Error

** human values ** 0.000005 0.0021 0.0010

1. u-net 0.000353 0.0382 0.0611

2. DIVE-5CI 0.000355 0.0305 0.0584

3. IDSIA [1] 0.000420 0.0504 0.0613

4. DIVE 0.000430 0.0545 0.0582

10. IDSIA-SCI 0.000653 0.0189 0.1027
Other teams Used

post-processing method!

30



03 U-Net. Result BrAlIn Lab.)

a rtificial Intelligence La

Table 2. Segmentation results (I0U) on the ISBI cell tracking challenge 2015.

Name PhC-U373 DIC-HelLa
IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 (.83 0.46

u-net (2015) 0.9203 0.7756

31



03 U-Net. Inference BrAIn Lab.&5
‘Brain and Irill;i]z ia |%%%ﬂﬁﬁ b.

32



04 BERT BrAIn Lab. &

Bidirectional Encoder Representations
from Transformers

33



04 BERT BrAln Lab. &)

“Bidirectional Learning for Context Understanding”



04 BERT vs. BrAln Lab. &)

BERT (Ours) OpenAl GPT

1.BERT: Bidirectional learning with Using Self-attention
2.GPT-1: One-Directional Learning with Masking self-attention (Left-to-Right model, L'TR)

3.ELMo: Concatenation result with “LTR LSTM model + RTL LSTM model”

35



04 BERT BrAln Lab. &)

Feature-based

“Using pre-trained model(freeze) for feature extractor”



04 BERT BrAIn Lob. &

lllllllllllllllllllllllllllllllllllllllll

@-tun@

“transfer learning(no freeze) with pre-trained model”

3/



04 BERT BrAIn Lab. &

Unsupervised Fine-tuning Approaches

38



04 BERT. Overview BrAIn Lab &3

a rtificial Intelligence La

B E ) | &) Bl & |- | &
<r -

()(=] - [m)l= =] - [>=]

Masked Sentence 4 Masked Sentence B

\ = J
Uniabeled Sentence A and B Pair

Pre-training




04 BERT. Input BrAIn Lab.&3

Brain and Artificial Intelligence Lab.

Input E@E
cmoedsngs | B[ Emy ][ Ee ][ &0 ][ B ] [ ][ 2 ] [ ] [ ] [ B ] [

== G
ooeasegs | Eo [ € ][ &2 (& J[ & ][ & (e ][(e ] (e ] [0 ][ (Eso |

1.“Segment Embeddings + Separate Token” works about separating sentences

2.Class token have whole context info for whole sentences (because
of self-attention and no info itself)

3.Sum of embeddings info use for input

40



04 BERT. pre-training

Use the output of the

masked word's position
to predict the masked word

Randomly mask
15% of tokens

Input

[ FFHH"'!'[l-I:IﬂI'MI ]
-
L
2 &
N
EEEEEEE
Tttt ottt
Mask Random Token

BrAIn Lab.&5

‘Brain and Artlficlal_lntelligence Lab.

Class token use for Next Sentence
Prediction & classification

Predict likeliho
that sentence
belongs atter
sentence A

Tokenized
Input

Input

41

d

FFMM + Softmjax

BERT

(CLS]

tt 1ttt

[MASK]

(CLS]

| LASE]) [MASK]

SETTETEDE A SENLEnCE B




04 BERT. pre-training BrAIn Lab. &9

“MLM(Masked Language Model) and
NSP(Next Sentence Prediction) task
do at the same time”



04 BERT. pre-training BrAIn Lab. &

‘Brain and Artificial Intelligence Lab.

Vocabulary and NSP Answer
already exist before pre-training

Use the output of the ) | 0.1%  Aarcvark Predict likelihood .
masked word's position Al Enctictwore. IR vroxovisaion that sentence B
to predict the masked word | | oelongs alter g%  MoiMexd
0%  Zyzzyva sentence A
¥ t
[ EENN + Saftrnax ] FEMN + Softmax
Not generating WOl‘(i in mask position!| e | o s -
Selecting word.in vocabulary h e —
e & e @
BERT BERT
\ J g\ /
Randomly mask S - lokenized e
15% of tokens T T T T T T T T T Input -:L- T T :h-LIam T T T T T
CLE] [EAASK] k
npu bttt ot ottt npu e s s e
) eETLETelE & senpence B
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04 BERT. Fine-tuning BrAIn Lab. &)

al Intelli

Class Class
Label Label ° °
o o« 1. A separate fine-tuned model is required for each
[ T ][ T[5EF'| ] T, ] [ © I Ty ][ T2 ] m task
BERT BERT
—r —— = E 2.1In task (a), the model determines whether two
L8] I M [SEP]| L o Ecis: E, E, M ° ° °
——C—C—C—O—<r ————r <r sentences are semantically identical
- e R (e ) s | Tok1 || Tok2 § Tok N
@ | J | |
I o
Sentence 1 Sentence 2 Single Sentence 3.1n task (b), the model matches or classifies the
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks: Overall properties or characteristics Of an entire
MNLI, QQP, QNLI, STS-B, MRPC, SST-2, ColA
RTE, SWAG sentence
Start/End Span B-PER O

)T e [17 * 4.1In task (c¢), the model is given a passage along

with a question and must predict the span in the

BERT BERT
passage where the correct answer appears

B } B | N Eiser Ey | - B Ecis ‘ E, E, Ewn

—— ———0 —~ i . .

- =0 3) es | B - e 5.1In task (d), the model classifies the meaning or
e - S oo role of each token, such as whether a word is a

9
(c) Question Answering Tasks: (d) Single Sentence Tagging Tasks: Verb? a noun9 a person S name and SO On.
SQuAD v1.1 CoNLL-2003 NER

44



04 BERT. Result BrAIn Lob.&
System MNLI-{(m/mm) QQP OQNLI SST-2 ColLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA S0.6/80. 1 66, | 823 93.2 35.0 51.0 K60 61.7 74.0
BiLSTM+ELMo+Attn T16.4776.1 Gl 8 T9.8 N4 36.0 733 849 56.8 71.0
Dpaml GPT 82.1/81.4 703 874 91.3 45.4 8.0 823 56.10) 75.1
BERTgase B4.6/83.4 71.2 0.5 93.5 52.1 85.8 KK.9 Hh.4 19.6
BERT  ArcE 86.7/85.9 72.1 92.7 94.9 6.5 865 59.3 T0.1 52.1
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