

U-Net & BERT

Olaf Ronneberger & Jacob Devlin

2026.01.05

BrainLAB Journal Club
Department of Applied Artificial Intelligence
Jeong SangYeop

Overview

01 Author & Journal

02 Challenges

03 U-Net

04 BERT

01 Author & Journal (U-Net)

Homepage of Olaf Ronneberger

apl. Prof. Dr. Olaf Ronneberger

Google DeepMind
London, UK
Twitter: [@ORonneberger](#)

and

Albert	U-net: Convolutional networks for biomedical image segmentation	126184	2015
Institu	O Ronneberger, P Fischer, T Brox		
Lehrst	International Conference on Medical image computing and computer-assisted ...		
George			
D-7911	Highly accurate protein structure prediction with AlphaFold	44506	2021
	J Jumper, R Evans, A Pritzel, T Green, M Figurnov, O Ronneberger, ...		
Email:	nature 596 (7873), 583-589		
	Accurate structure prediction of biomolecular interactions with AlphaFold 3	10679	2024
	J Abramson, J Adler, J Dunger, R Evans, T Green, A Pritzel, ...		
	Nature 630 (8016), 493-500		
	3D U-Net: learning dense volumetric segmentation from sparse annotation	10293	2016
	Ö Çiçek, AAbdulkadir, SS Lienkamp, T Brox, O Ronneberger		
	International conference on medical image computing and computer-assisted ...		
	Protein complex prediction with AlphaFold-Multimer	3691	2021
	R Evans, M O'Neill, A Pritzel, N Antropova, A Senior, T Green, A Žídek, ...		
	biorxiv , 2021.10. 04.463034		
	Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context	3307	2024
	G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...		
	arXiv preprint arXiv:2403.05530		

01 Author & Journal (BERT)

Jacob Devlin

Software Engineer at Google

미국 워싱턴 레드먼드 · [연락처](#)

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Computer Science ·

[North American Chapter of the Association for...](#) · 2019

TLDR A new language representation model, BERT, designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks. [Expand](#)

 107,456 21,679 Save Alert

Natural Questions: A Benchmark for Question Answering Research

T. Kwiatkowski J. Palomaki +15 authors Slav Petrov Computer Science ·

[Transactions of the Association for Computational...](#) · 1 August 2019

TLDR The Natural Questions corpus, a question answering data set, is presented, introducing robust metrics for the purposes of evaluating question answering systems; demonstrating high human upper bounds on these metrics; and establishing baseline results using competitive methods drawn from related literature. [Expand](#)

 4,049 511 Save Alert

Scaling Instruction-Finetuned Language Models

Hyung Won Chung Le Hou +29 authors Jason Wei Computer Science ·

[Journal of machine learning research](#) · 20 October 2022

TLDR It is found that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups, and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). [Expand](#)

 3,773 411 Save Alert

02 Several Challenges for Computer Vision

Semantic Segmentation

**GRASS, CAT,
TREE, SKY**

No objects, just pixels

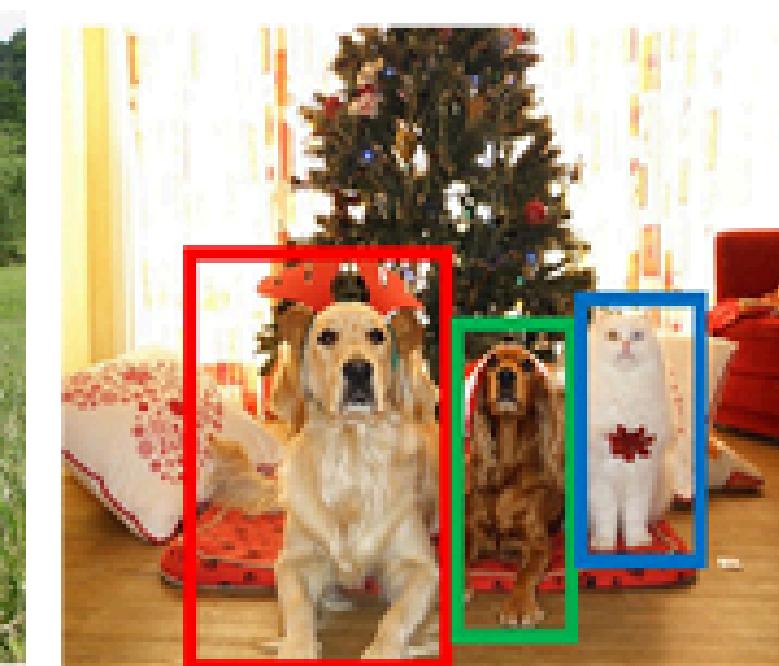
“Pixel-wise classification”

Classification + Localization

CAT

Single Object

Object Detection



DOG, DOG, CAT

Multiple Object

“Bounding box localization
+ classification”

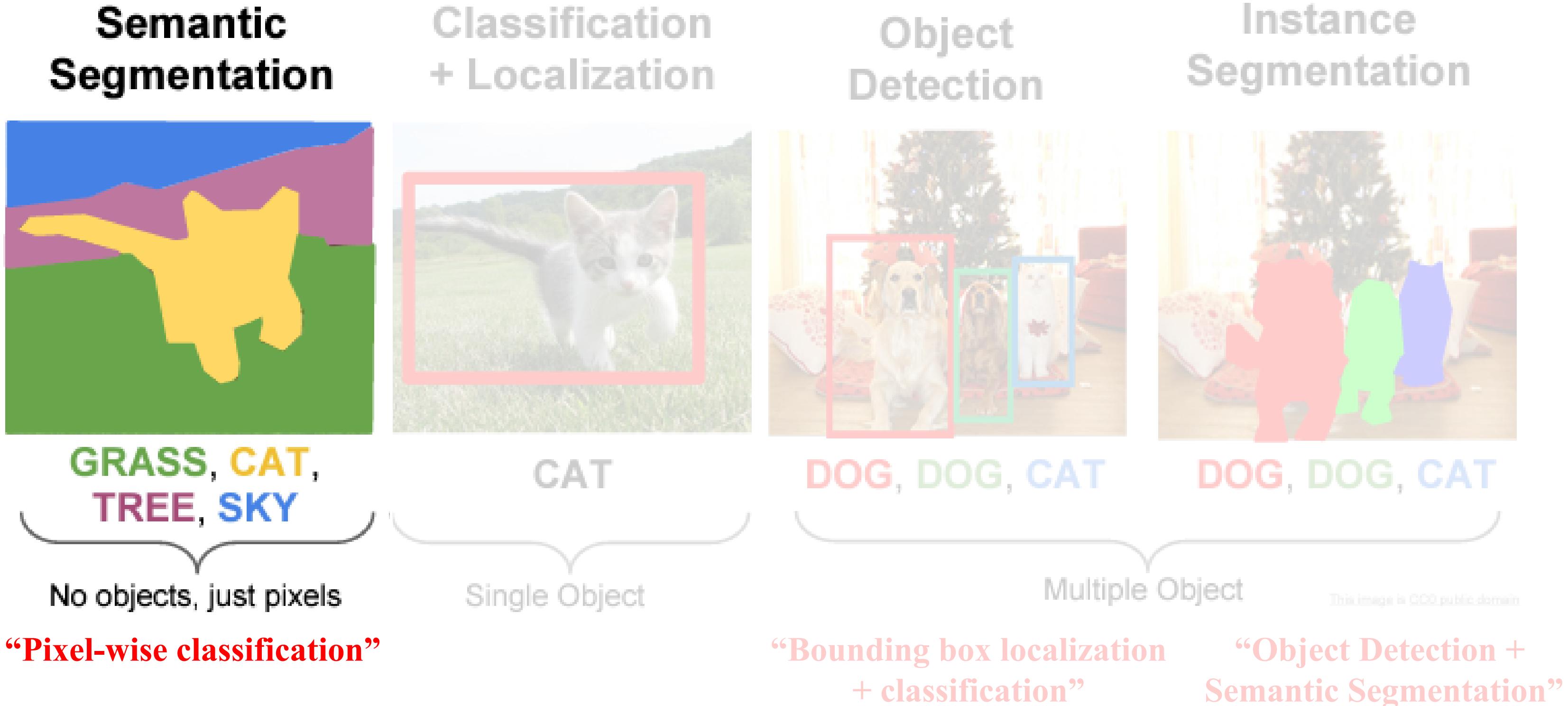
Instance Segmentation

DOG, DOG, CAT

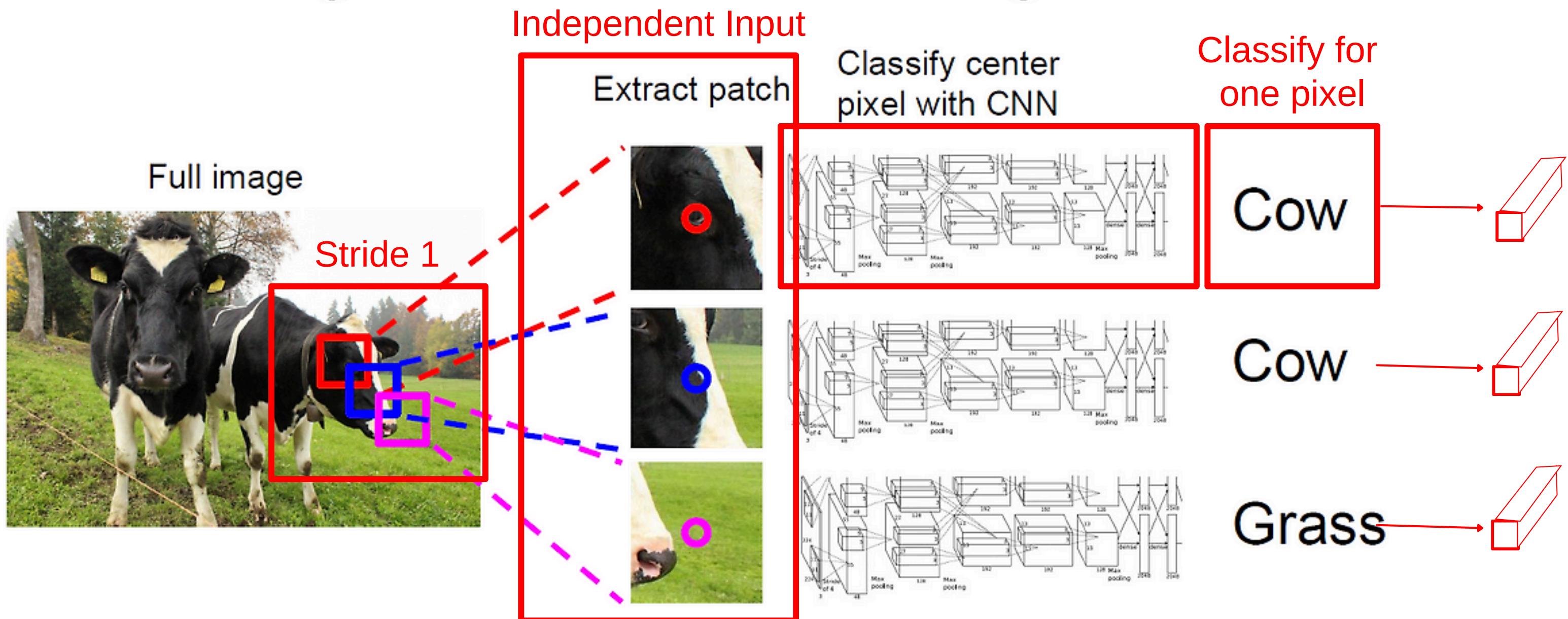
This image is CC0 public domain

“Object Detection +
Semantic Segmentation”

02 Several Challenges for Computer Vision



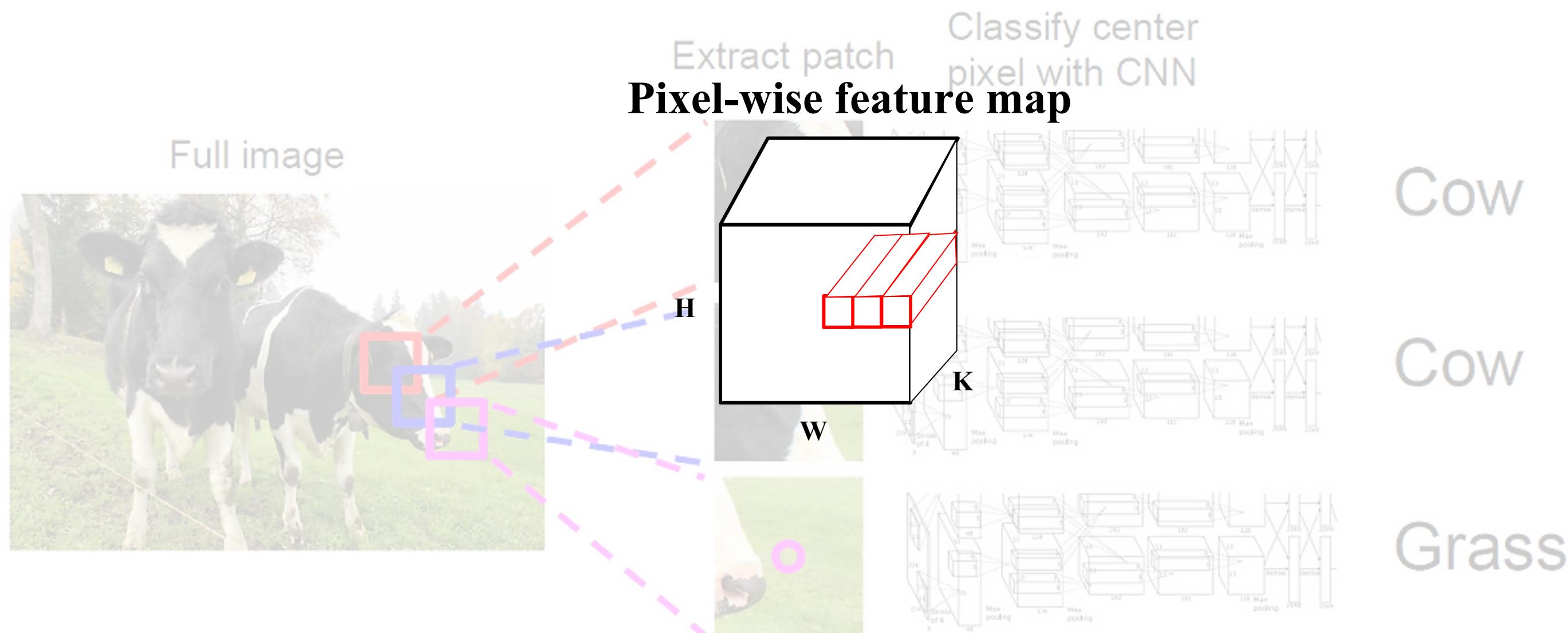
Semantic Segmentation Idea: Sliding Window



Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013

Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Semantic Segmentation Idea: Sliding Window

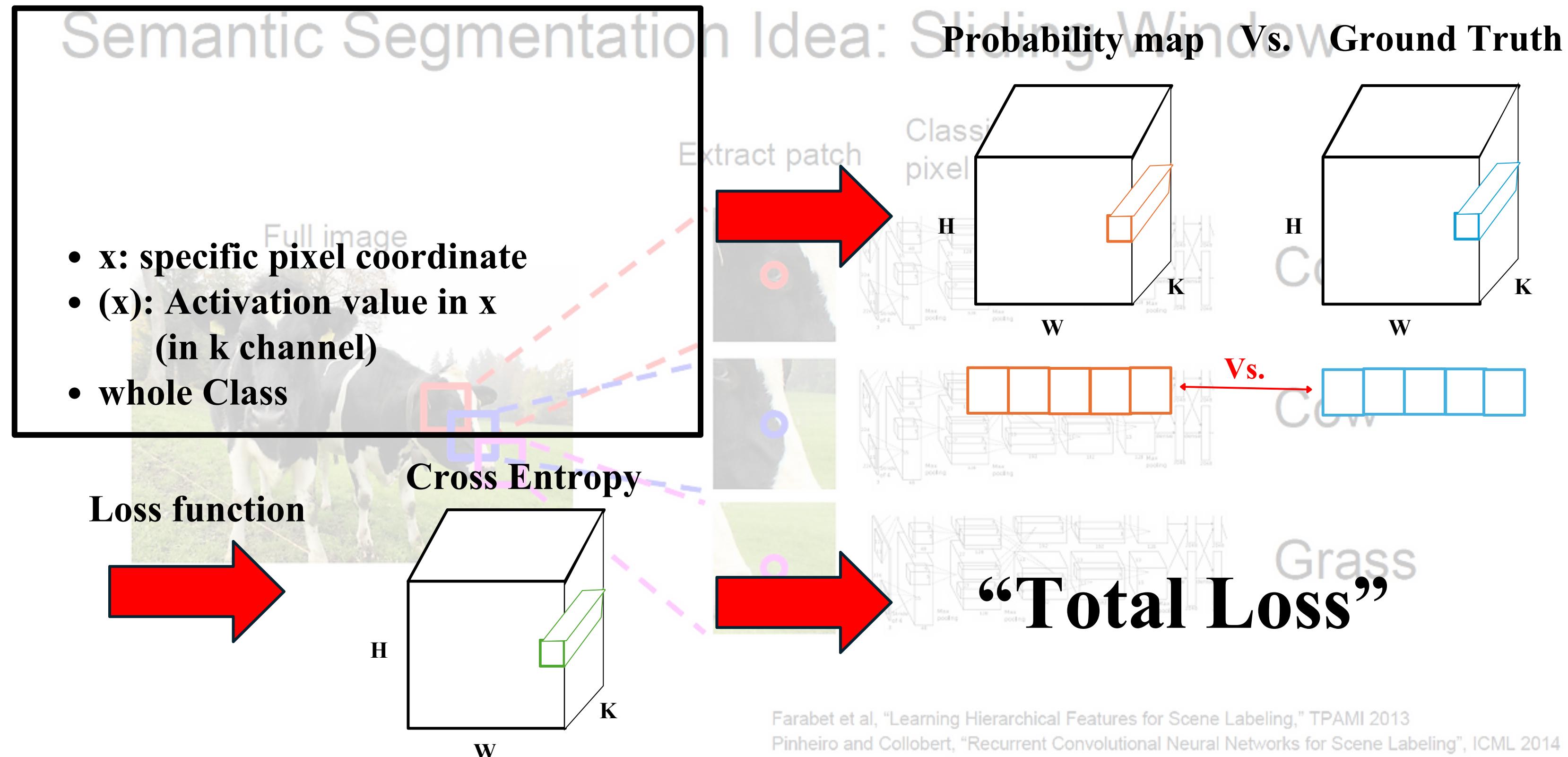


Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013

Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

02 Segmentation Challenge – Sliding window

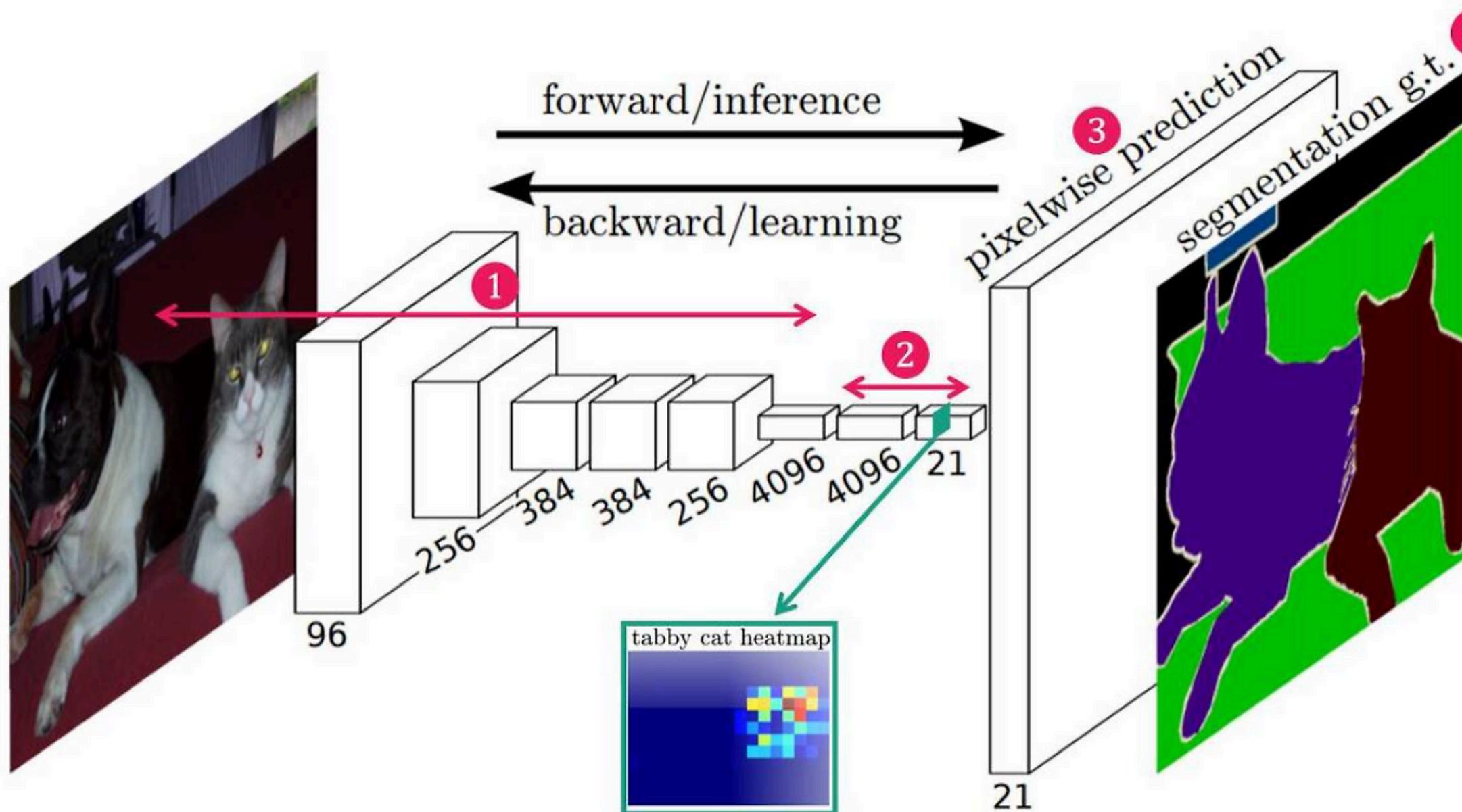
Softmax



Drawbacks

1. Shift 1 pixel each time for Probability map(model result)
2. Redundancy computation about overlapping pixels
3. Context & Localization info Trade-off
(because of max pooling)
4. Cannot use localization info efficiently
of independent input

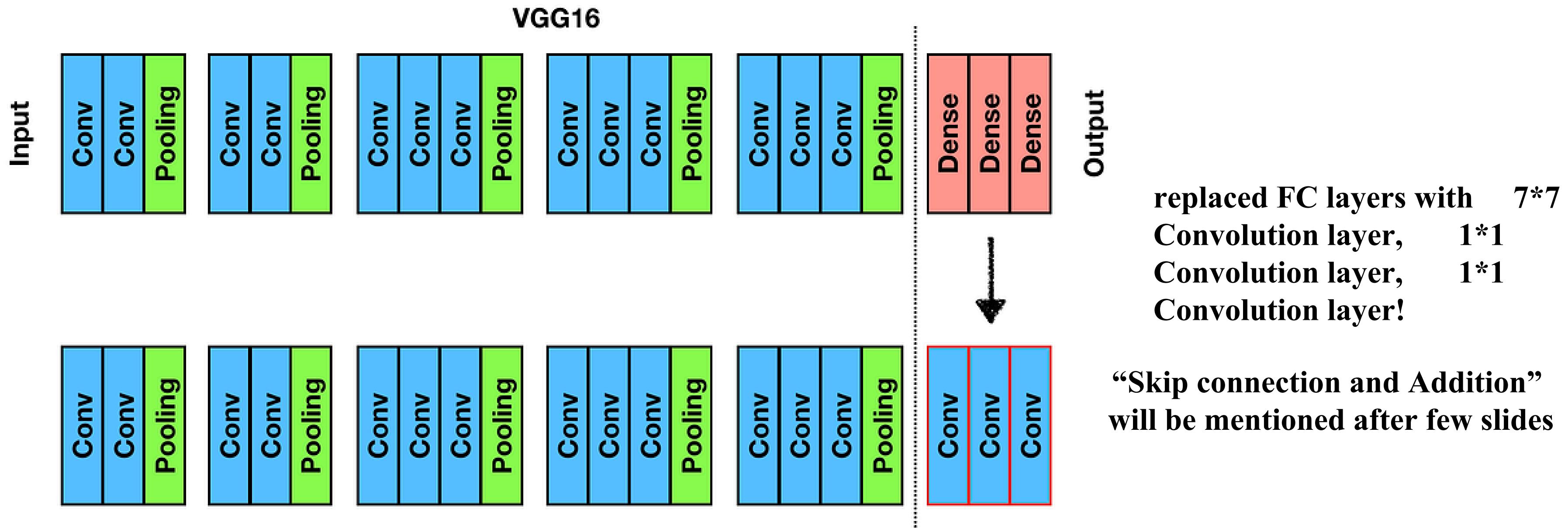
02 Segmentation Challenge - FCN



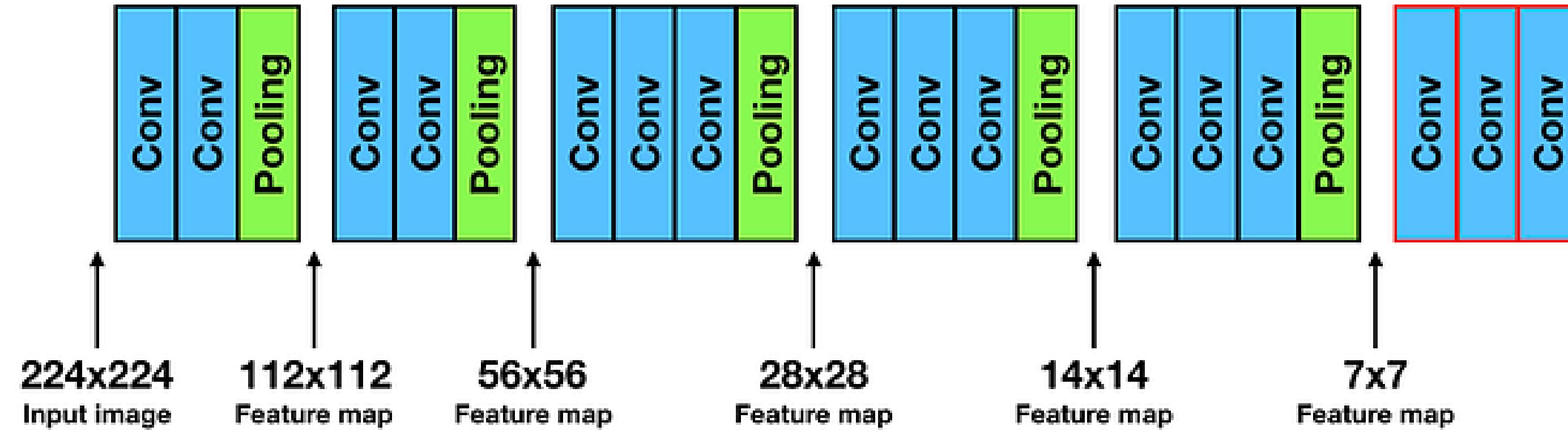
Attributes

1. Contracting path & Expansive Path
2. Whole Image goes into the input
3. No Fully connected layer (replaced with 1×1 convolution layers)
4. Typically implemented by VGG-Net
5. Using “Skip Connection + Addition”

02 Segmentation Challenge - FCN



02 Segmentation Challenge - FCN

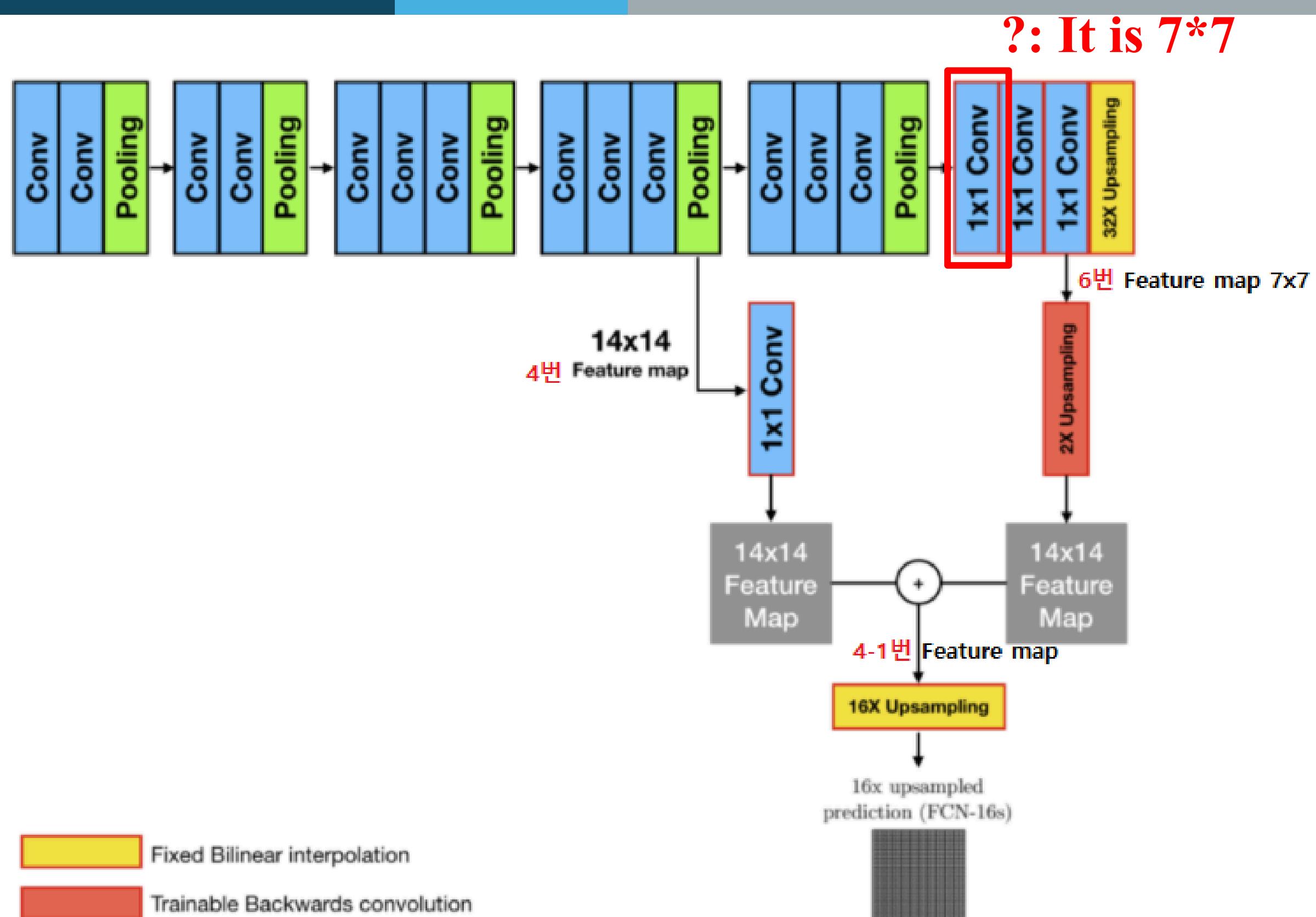
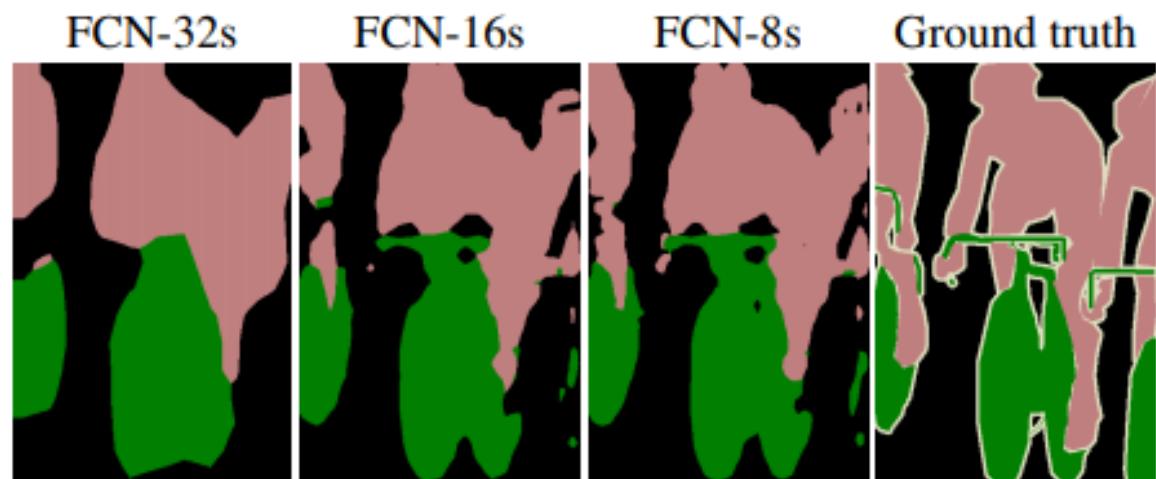


1. **7*7 convolution layer: resolution info fusion (fc layer role)**

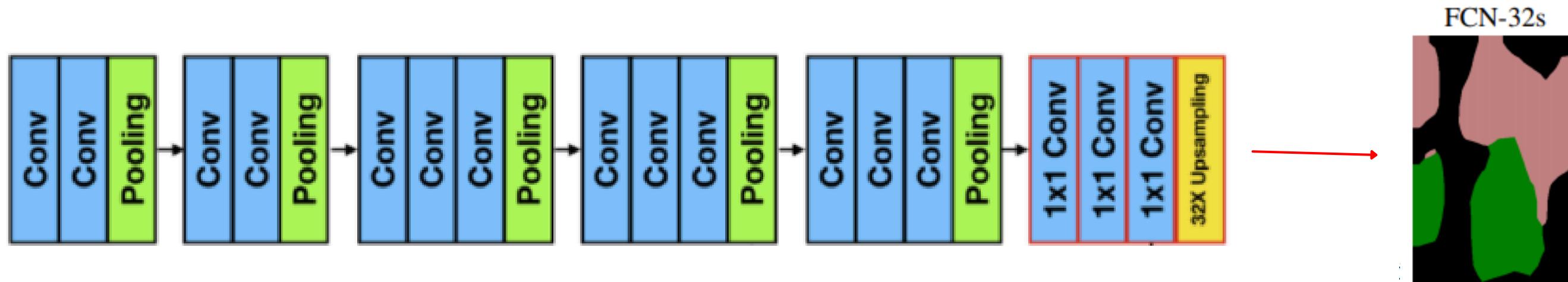
2. **1*1 convolution layer: channel info fusion (fc layer role)**

3. **1*1 convolution layer: change the number of channels (same with class numbers)**

02 Segmentation Challenge - FCN

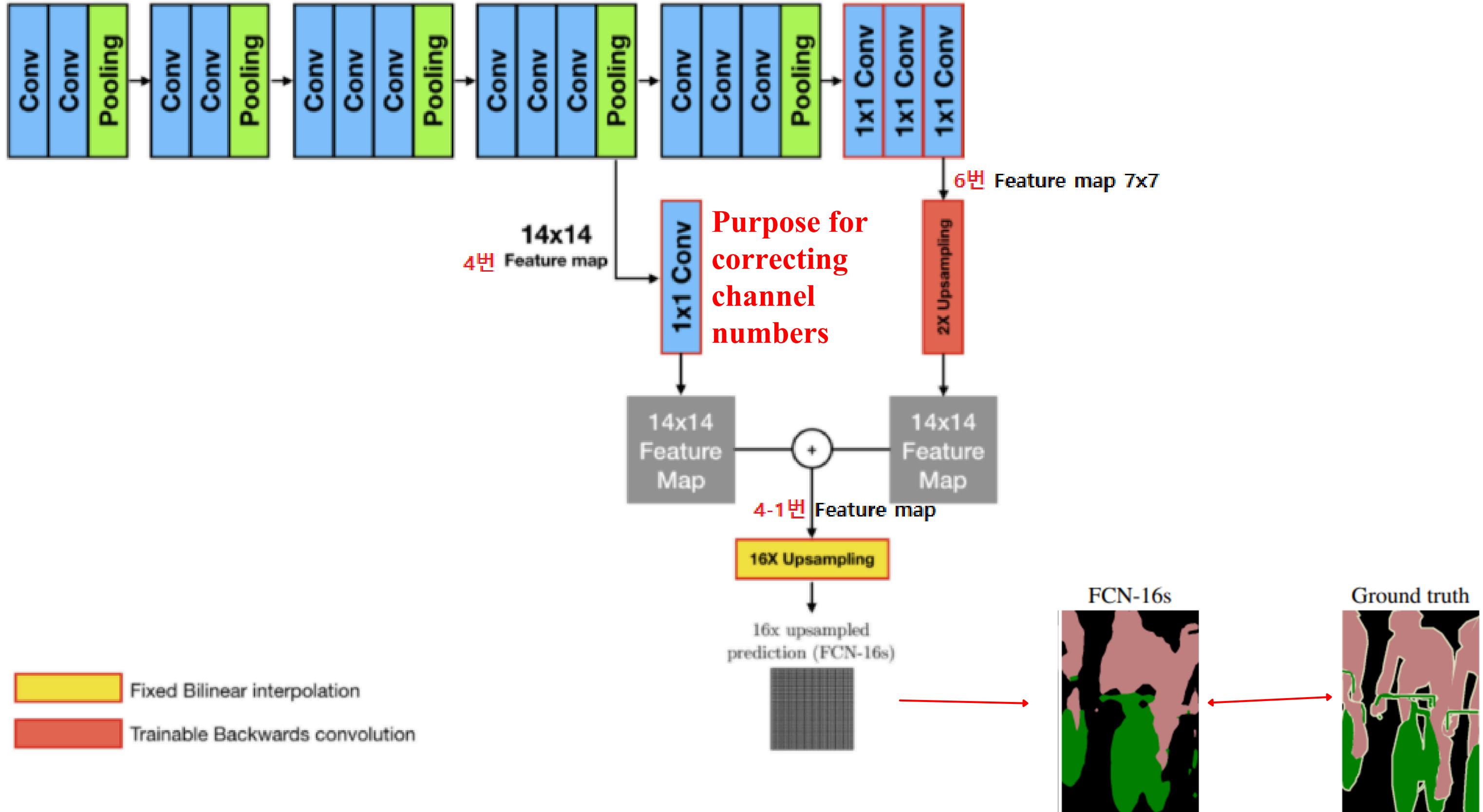


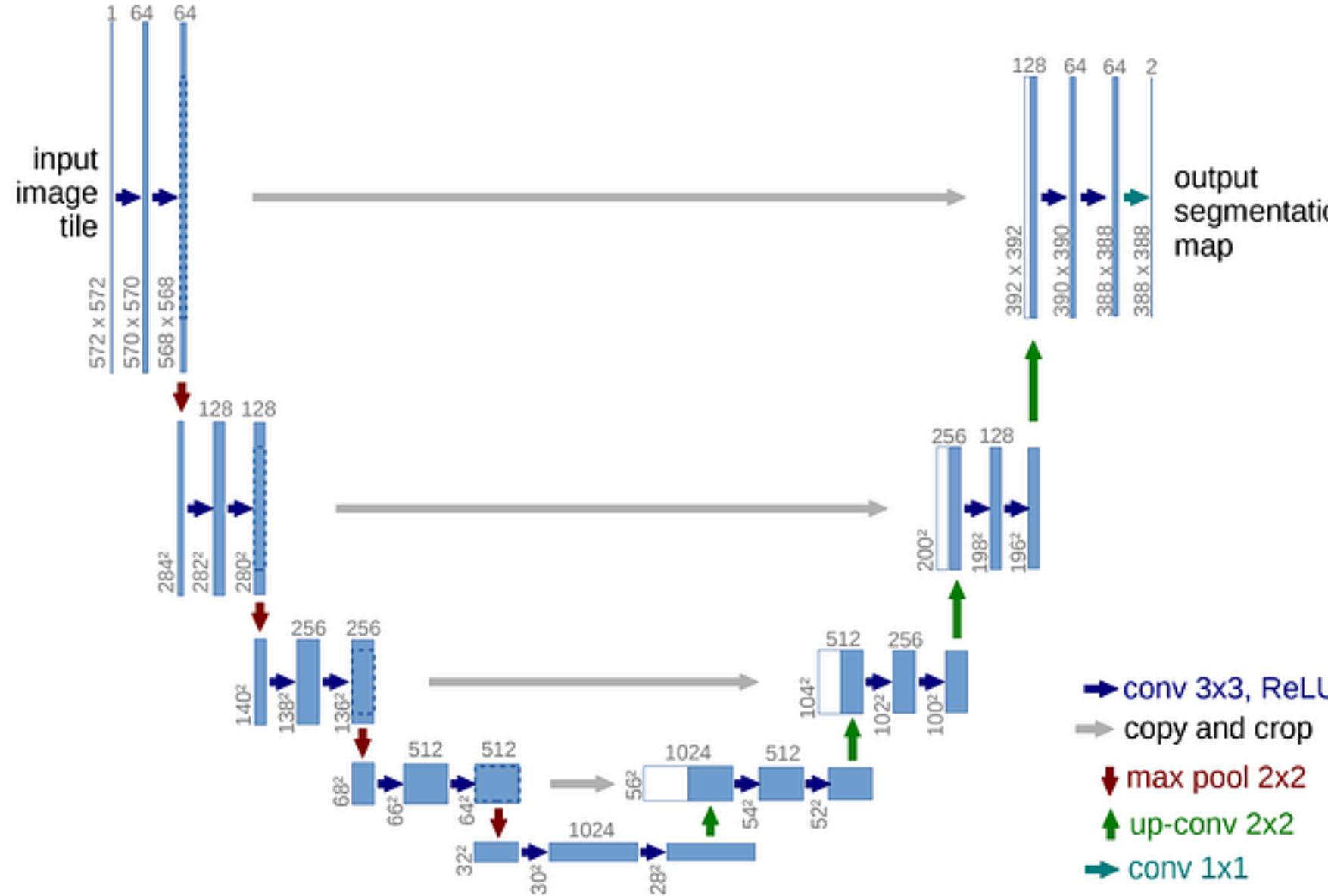
02 Segmentation Challenge - FCN32s



- **32X Upsampling (Transposed convolution layer)**
- **This version don't use skip connection and addition**
- **Image quality is poor**

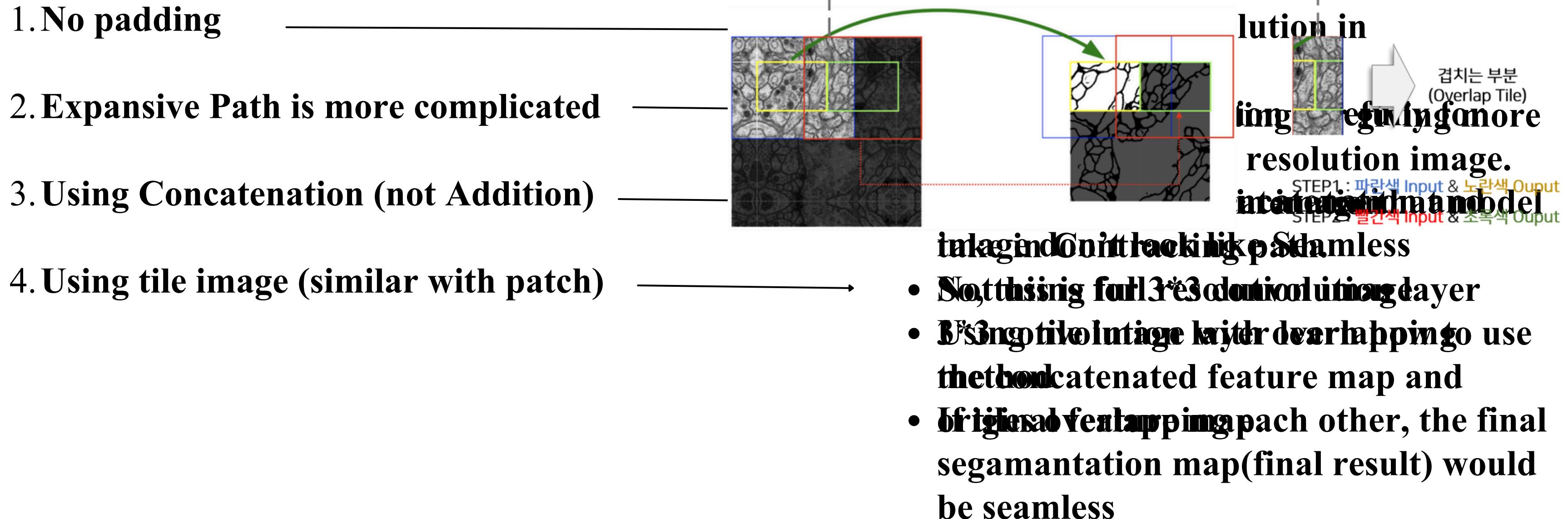
02 Segmentation Challenge - FCN16s



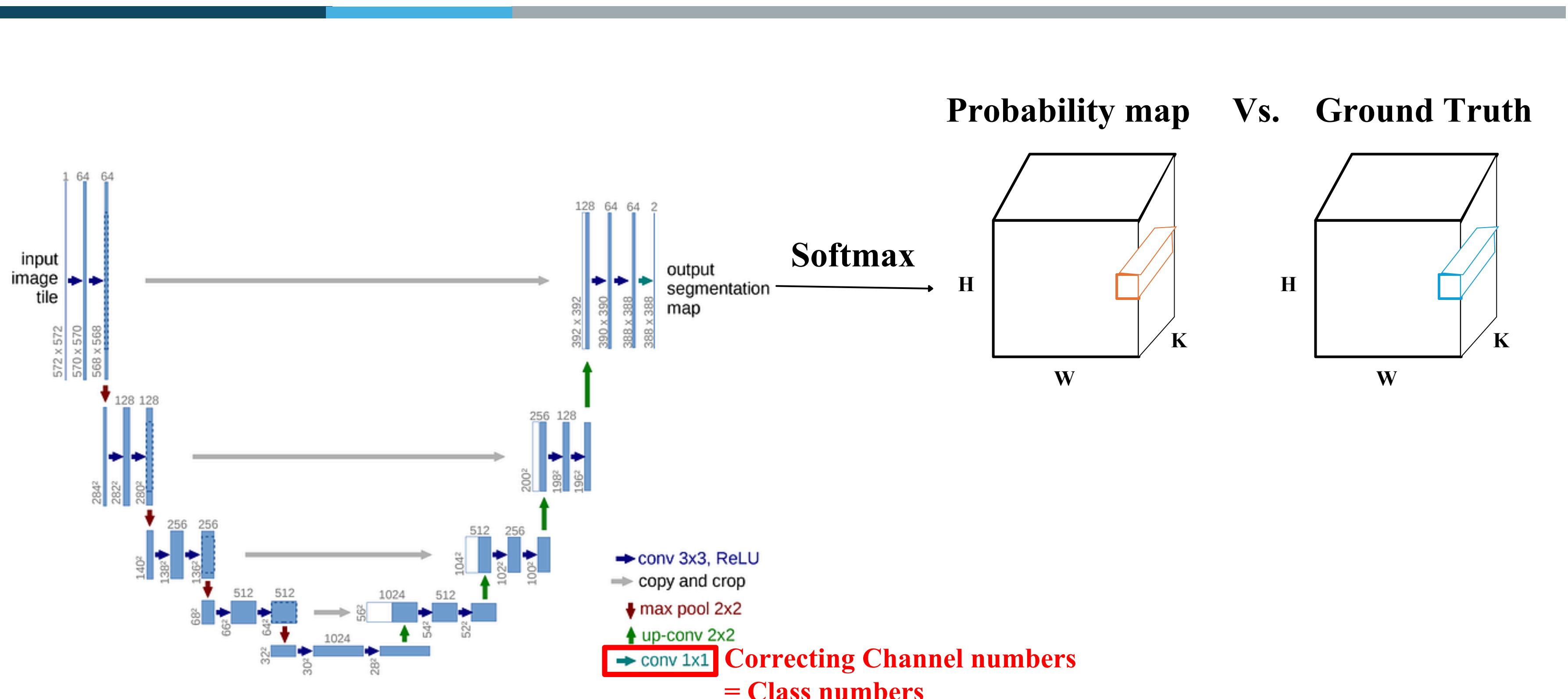


Attributes

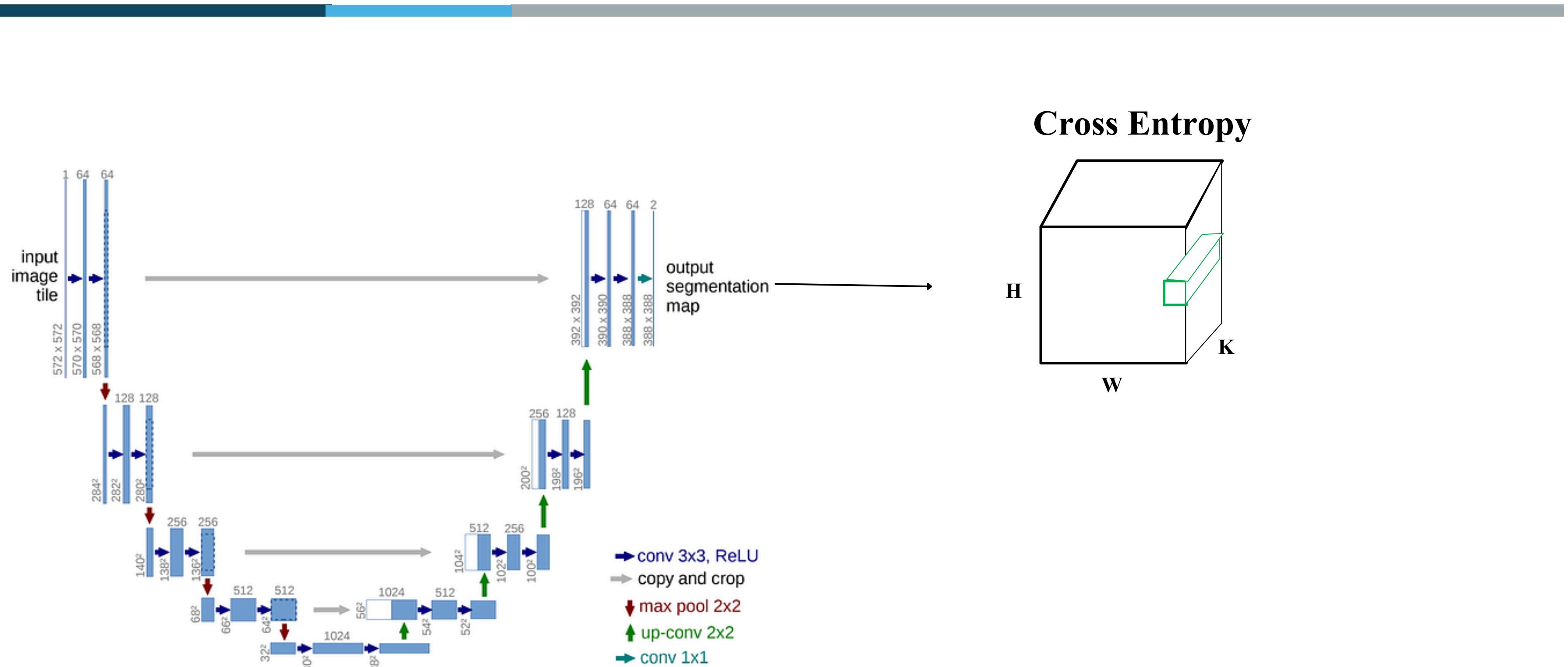
- 1. No padding**
- 2. Expansive Path is more complicated**
- 3. Using Concatenation (not Addition)**
- 4. Using tile image (similar with patch)**



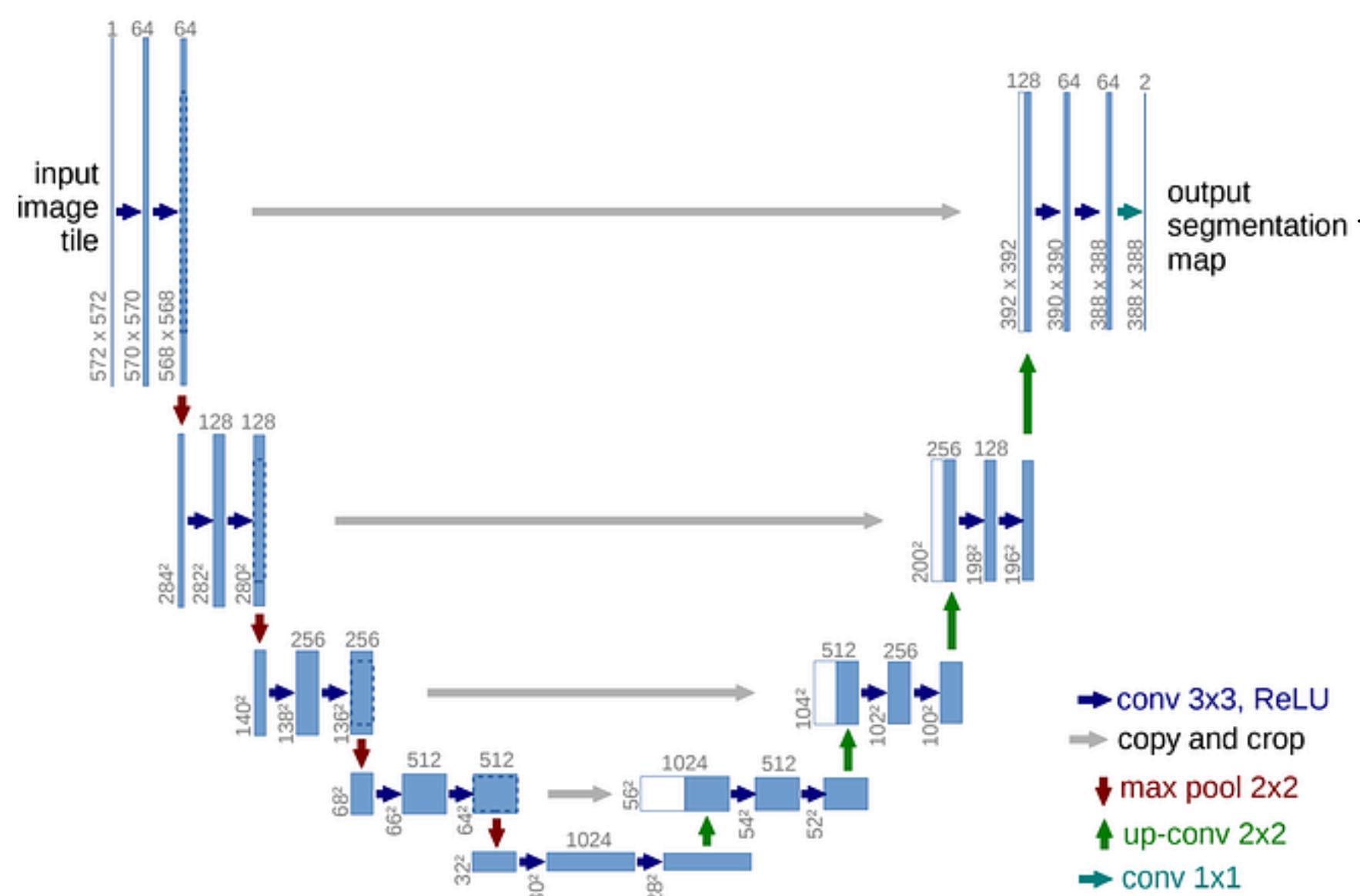
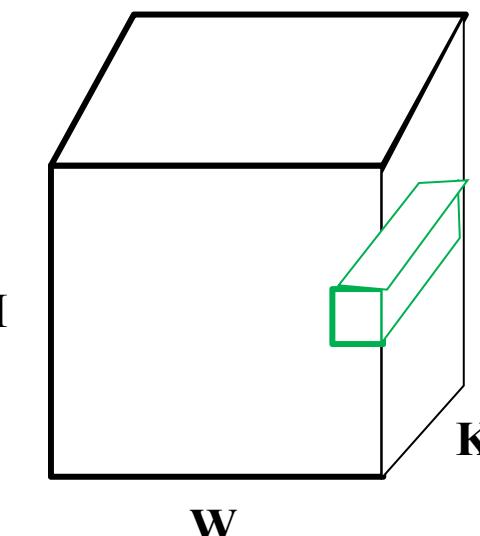
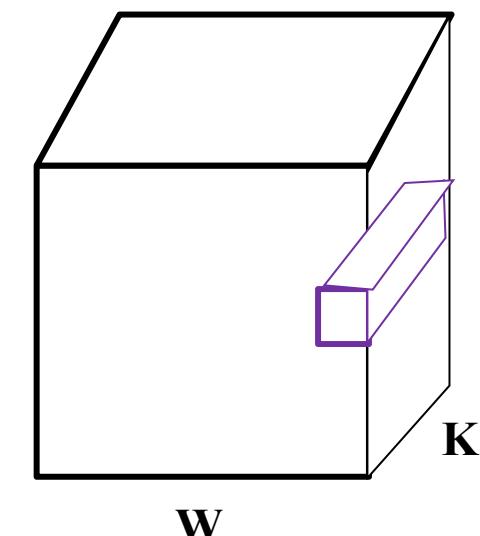
03 U-Net. Training



03 U-Net. Training

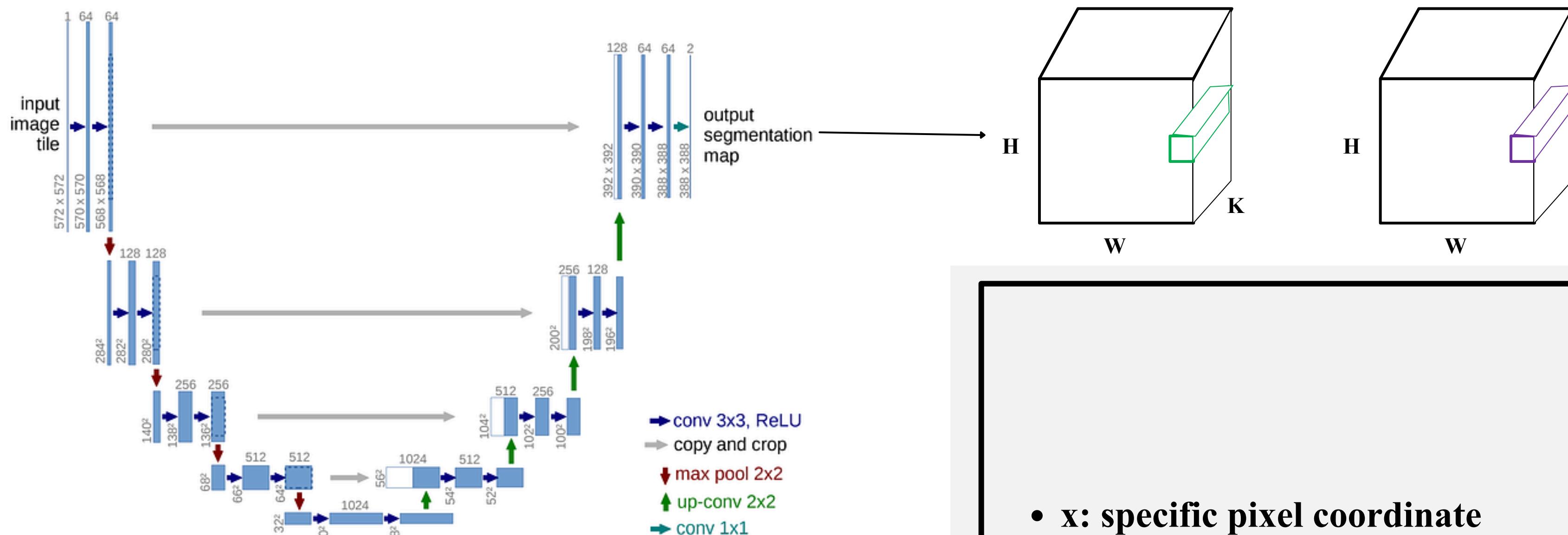


03 U-Net. Training



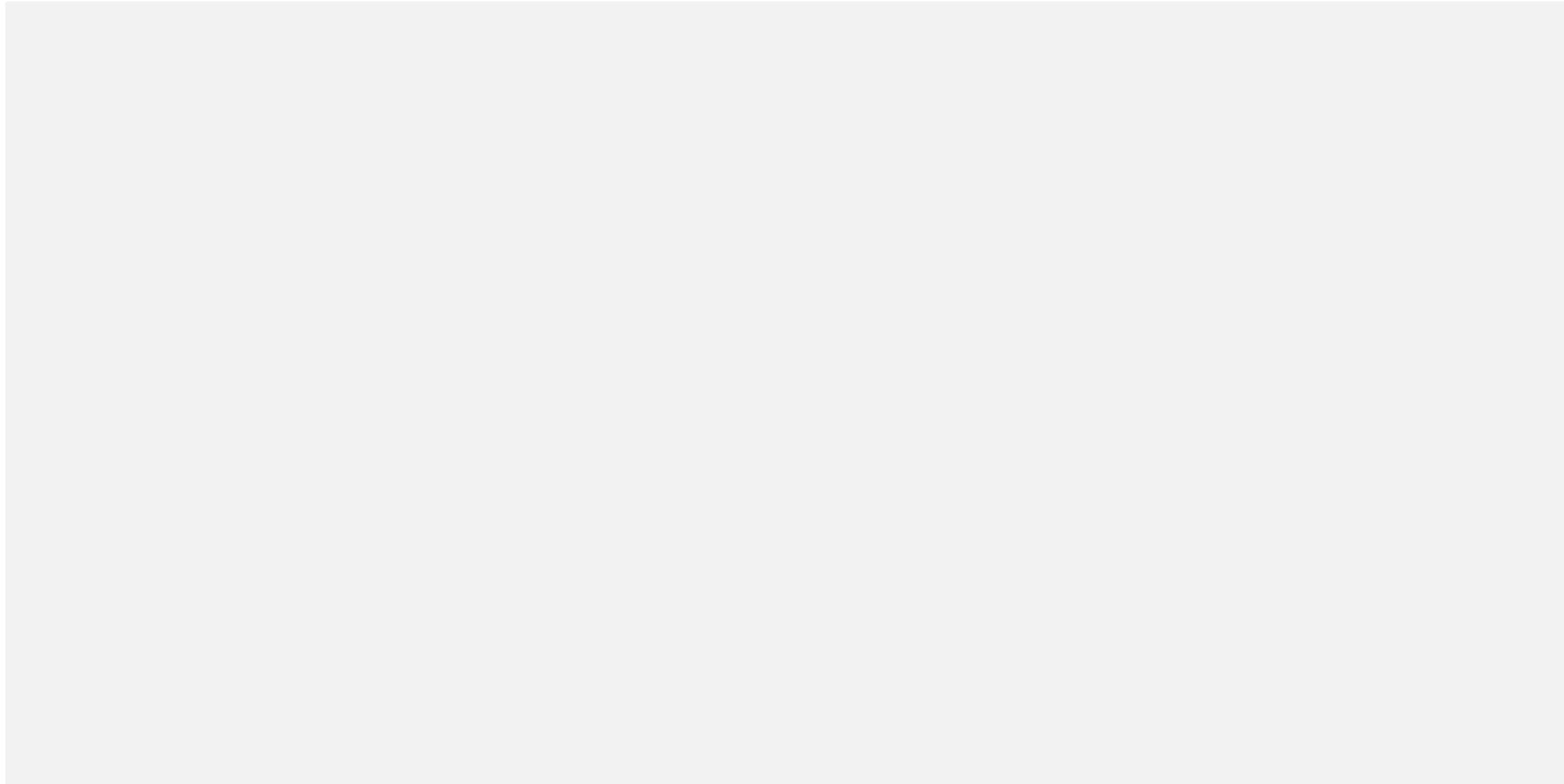
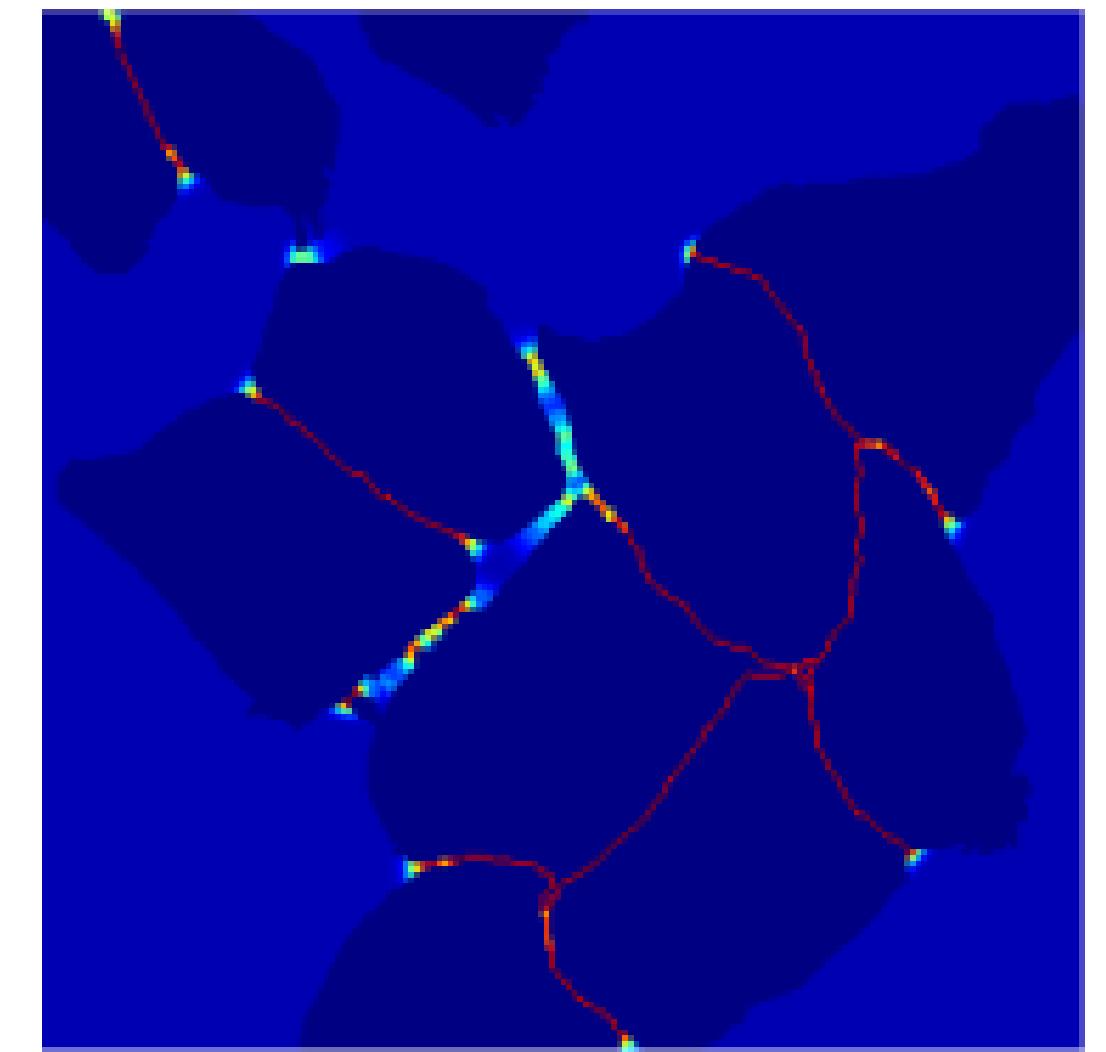
Concept: “weight map + cross entropy”

03 U-Net. Training



- x : specific pixel coordinate
- $w(x)$: weighted map
- true class probability in x

“For class imbalance and importance of segmentation border”



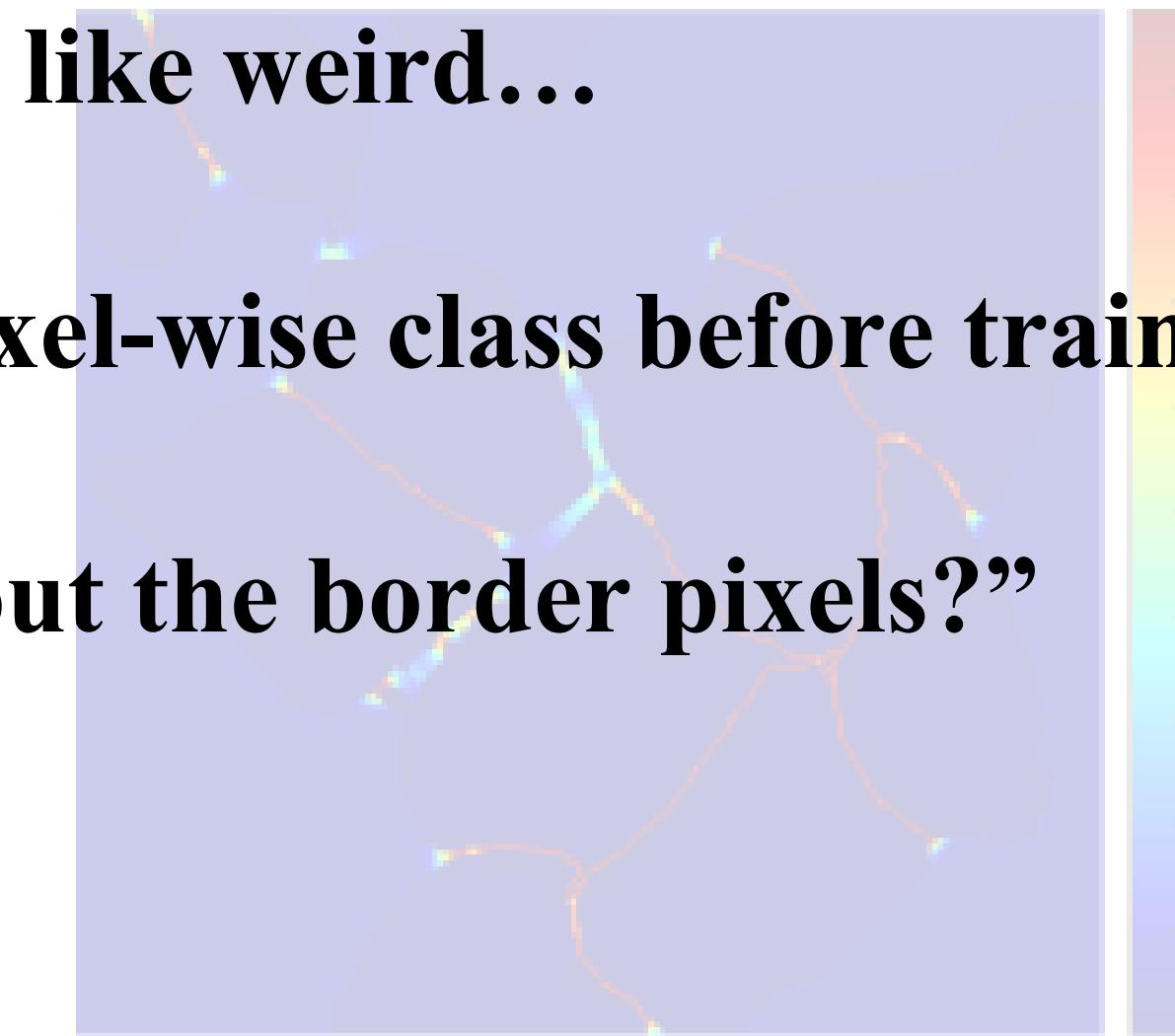
“For class imbalance and importance of segmentation border”

Weight map looks like weird...

“How we already know about the pixel-wise class before training?”

+

“How we already know about the border pixels?”



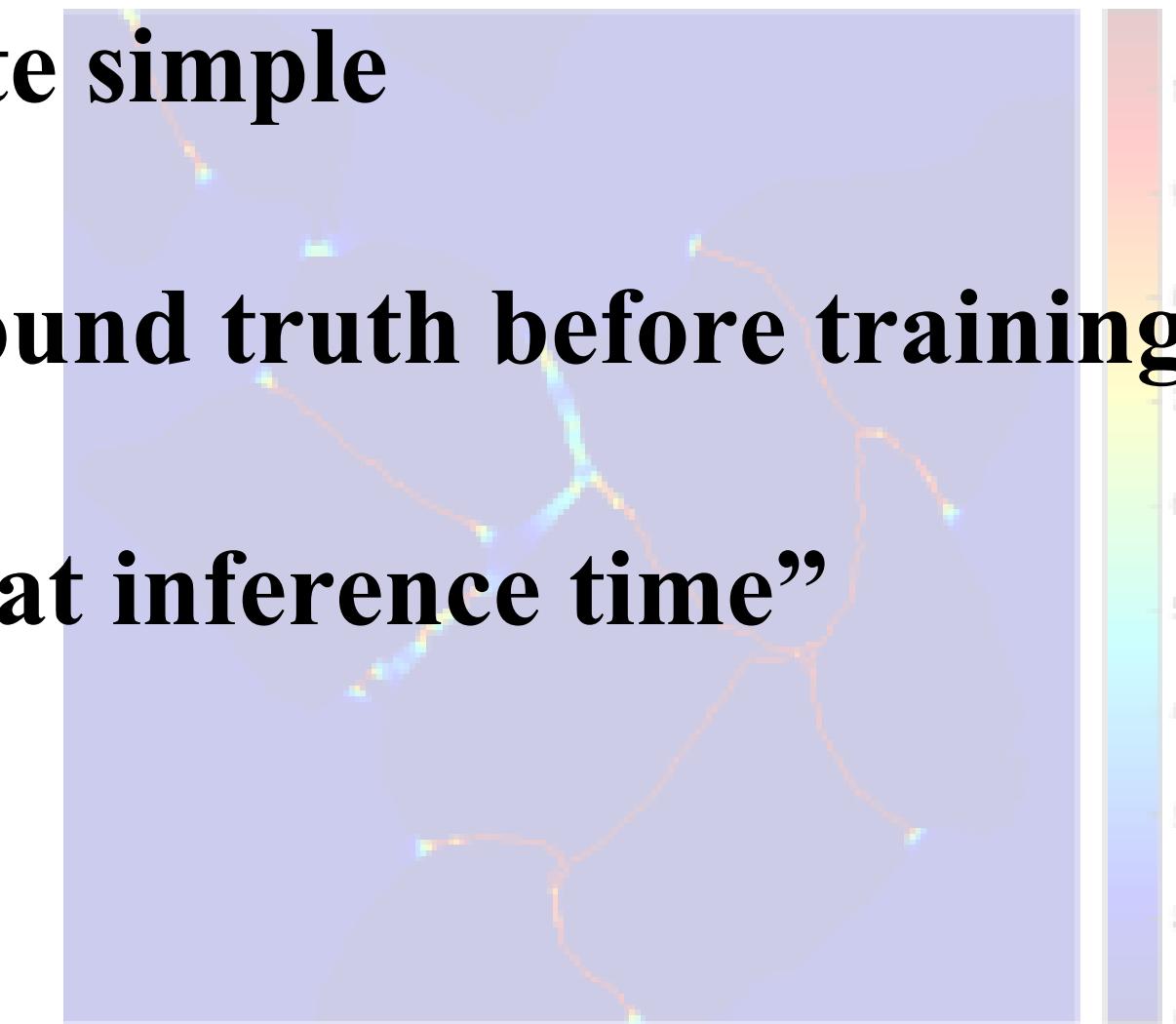
“For class imbalance and importance of segmentation border”

Answer is quite simple

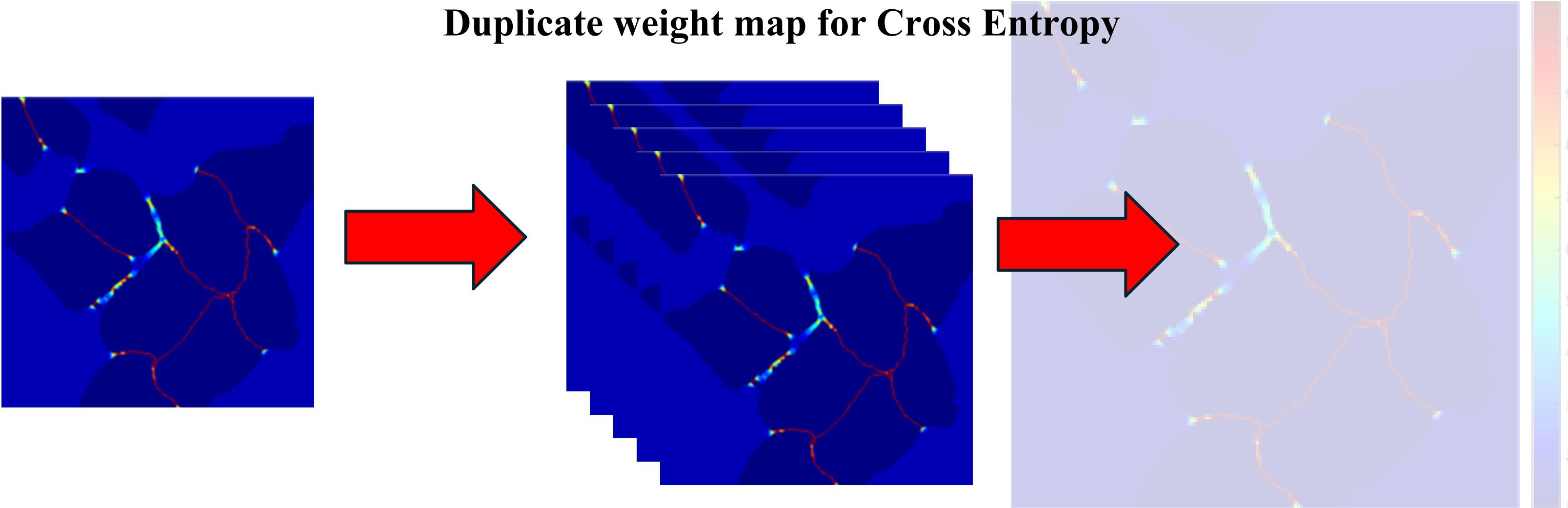
“It’s already computed about ground truth before training”

+

“Don’t use weight map at inference time”



“For class imbalance and importance of segmentation border”



03 U-Net. Augmentation & Initialization

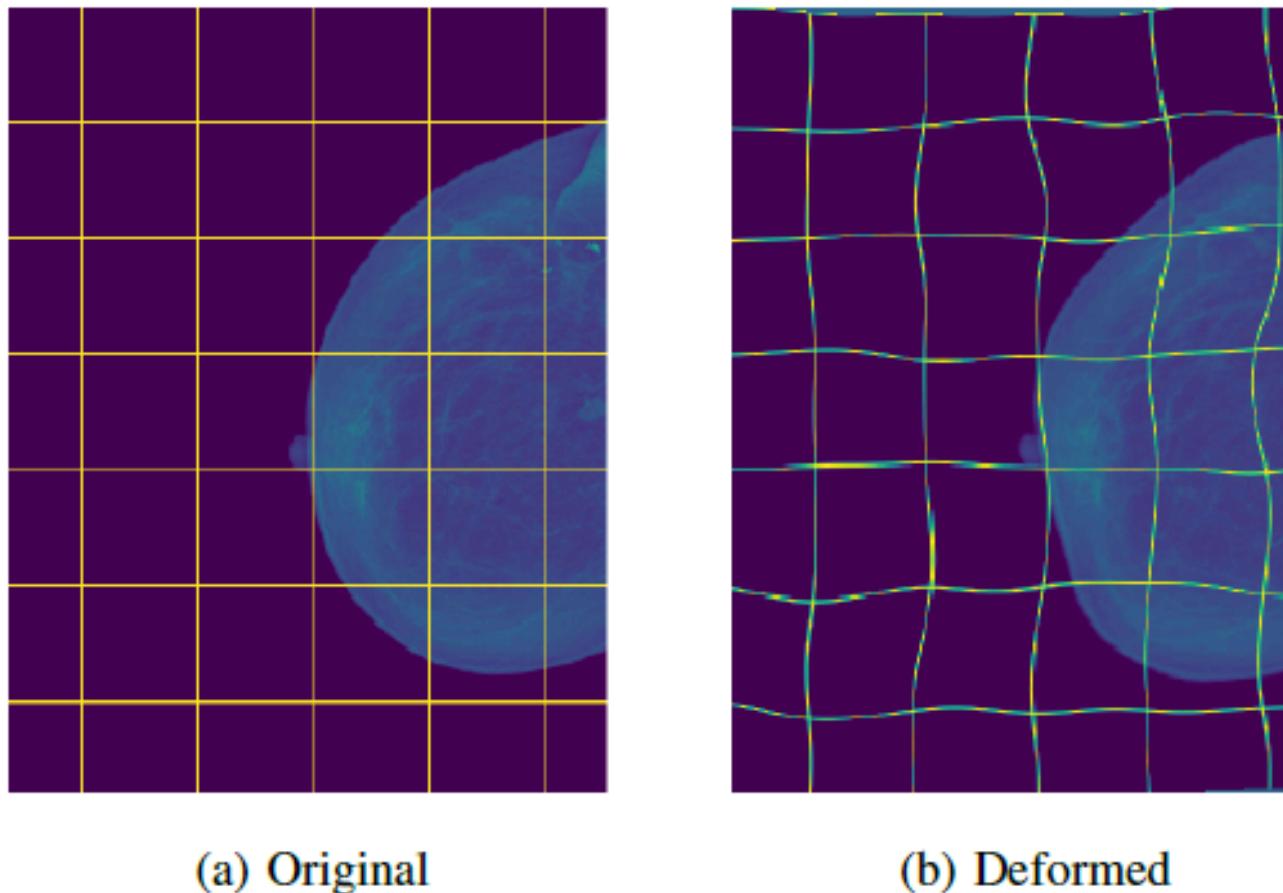


Fig. 3: Effects of performing elastic deformation on a mammogram.

He Initialization

Nerve cell membrane segmentation

Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted by warping error.

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
⋮				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

Table 1. Ranking on the EM segmentation separation [1] (med 6th 2015), sorted by warping error.

Rand error analyze object separation for random two pixels

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
⋮				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

Warping error
analyze cell
segmentation

Analyze model output
per pixel with ground
truth

Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted by warping error.

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
:				
10.	IDSIA-SCI	0.000653	0.0189	0.1027

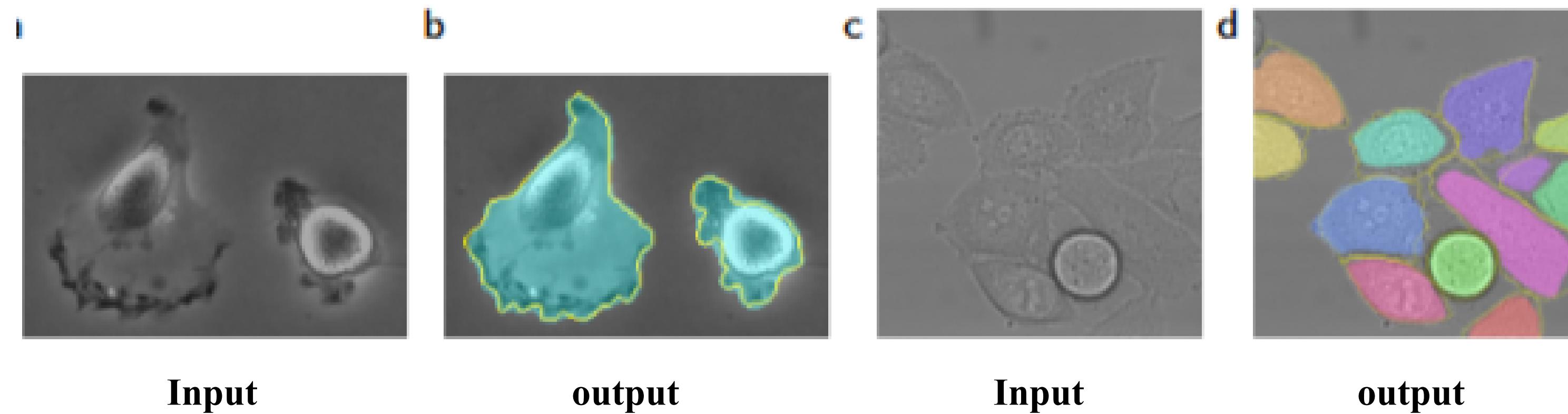
?

Other teams Used
post-processing method!

Table 2. Segmentation results (IOU) on the ISBI cell tracking challenge 2015.

Name	PhC-U373	DIC-HeLa
IMCB-SG (2014)	0.2669	0.2935
KTH-SE (2014)	0.7953	0.4607
HOUS-US (2014)	0.5323	-
second-best 2015	0.83	0.46
u-net (2015)	0.9203	0.7756

03 U-Net. Inference



Input

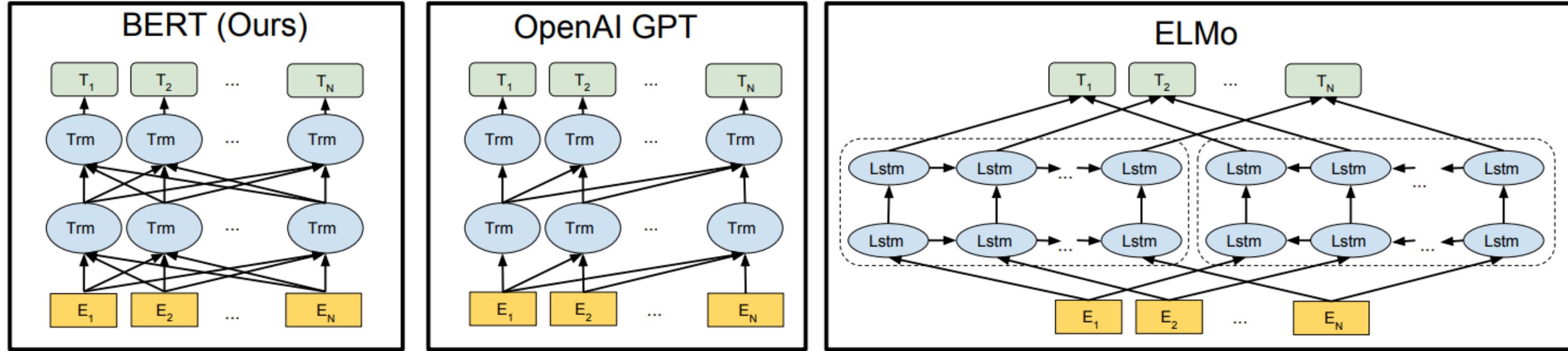
output

Input

output

Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations “Bidirectional Learning for Context Understanding” from Transformers



1. **BERT: Bidirectional learning with Using Self-attention**
2. **GPT-1: One-Directional Learning with Masking self-attention (Left-to-Right model, LTR)**
3. **ELMo: Concatenation result with “LTR LSTM model + RTL LSTM model”**

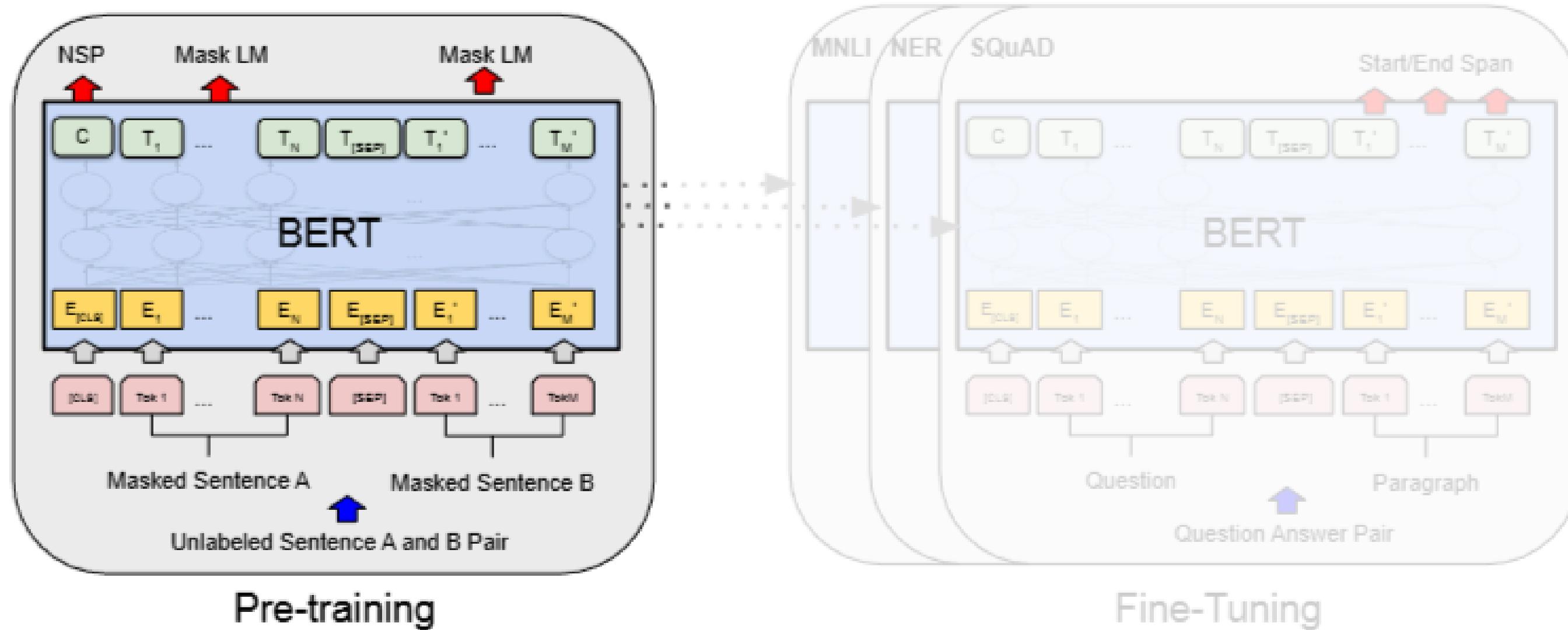
Feature-based & Fine-tuning

“Using pre-trained model(freeze) for feature extractor”

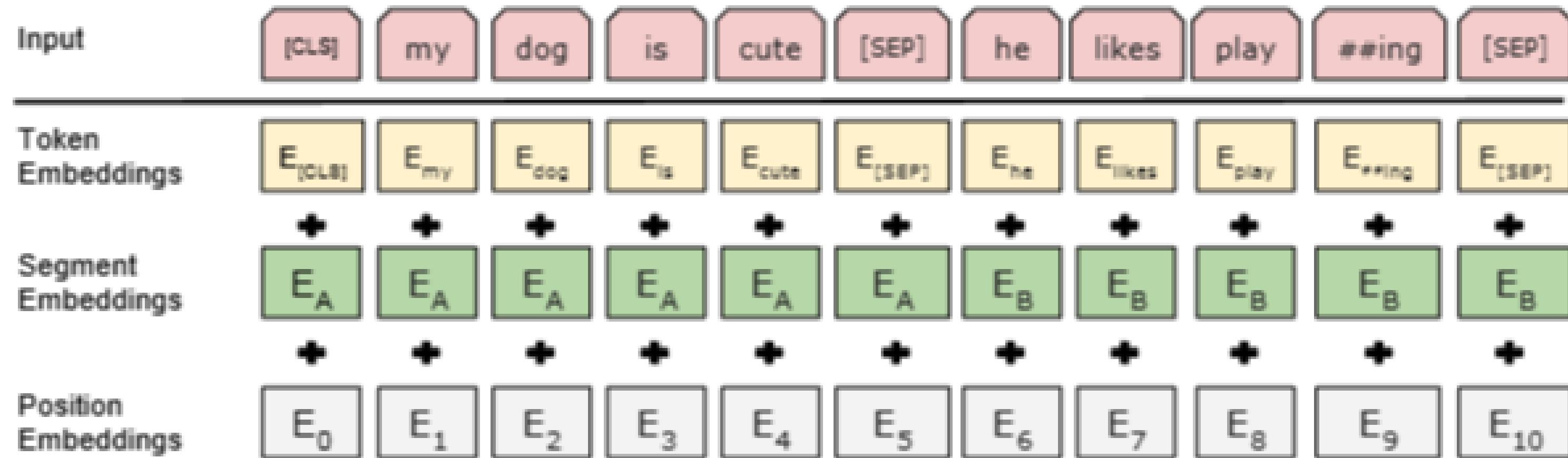
Feature-based & **Fine-tuning**
“transfer learning(no freeze) with pre-trained model”

Unsupervised Fine-tuning Approaches

04 BERT. Overview



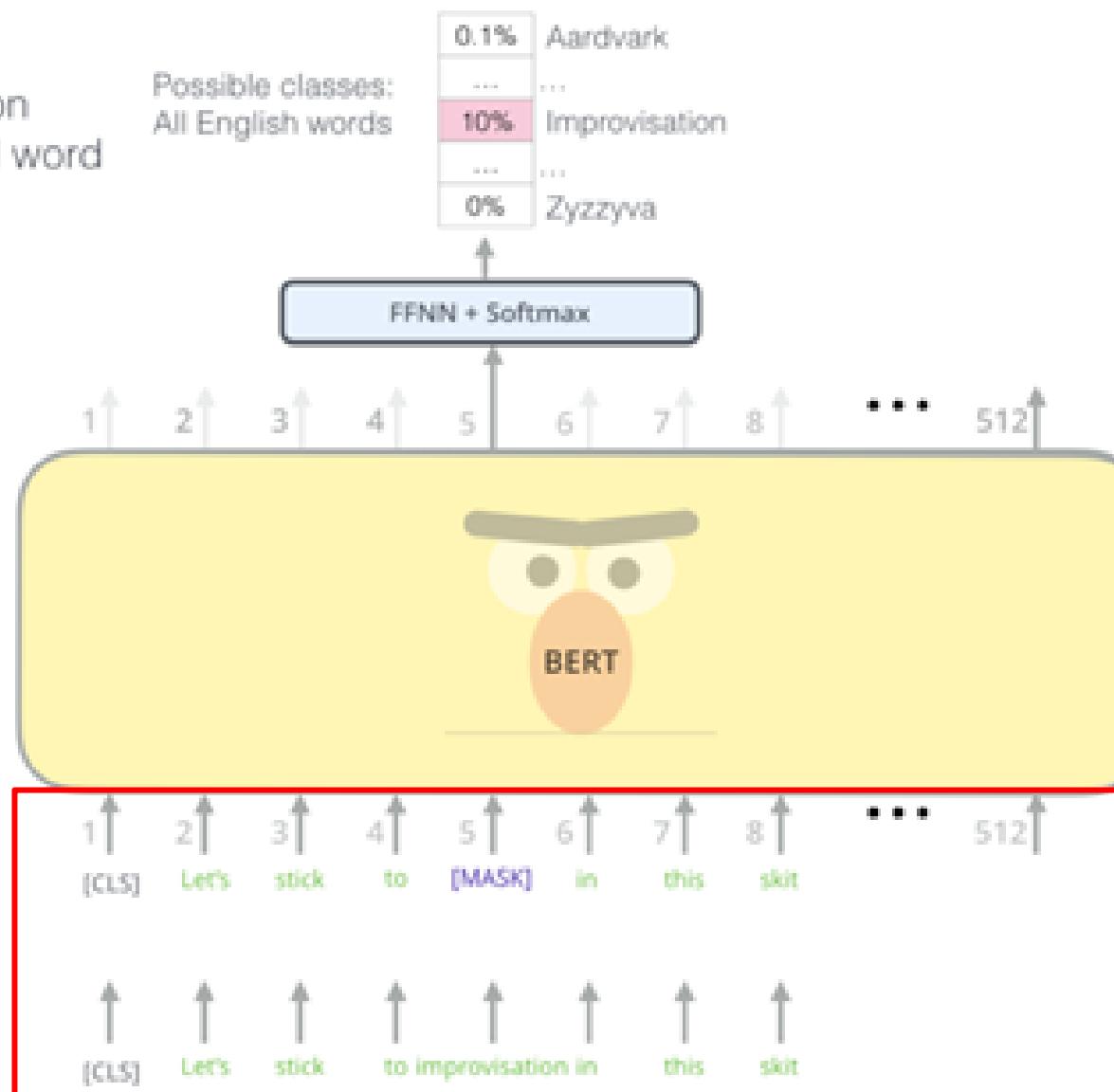
04 BERT. Input



1. “Segment Embeddings + Separate Token” works about separating sentences
2. Class token have whole context info for whole sentences (because of self-attention and no info itself)
3. Sum of embeddings info use for input

04 BERT. pre-training

Use the output of the masked word's position to predict the masked word

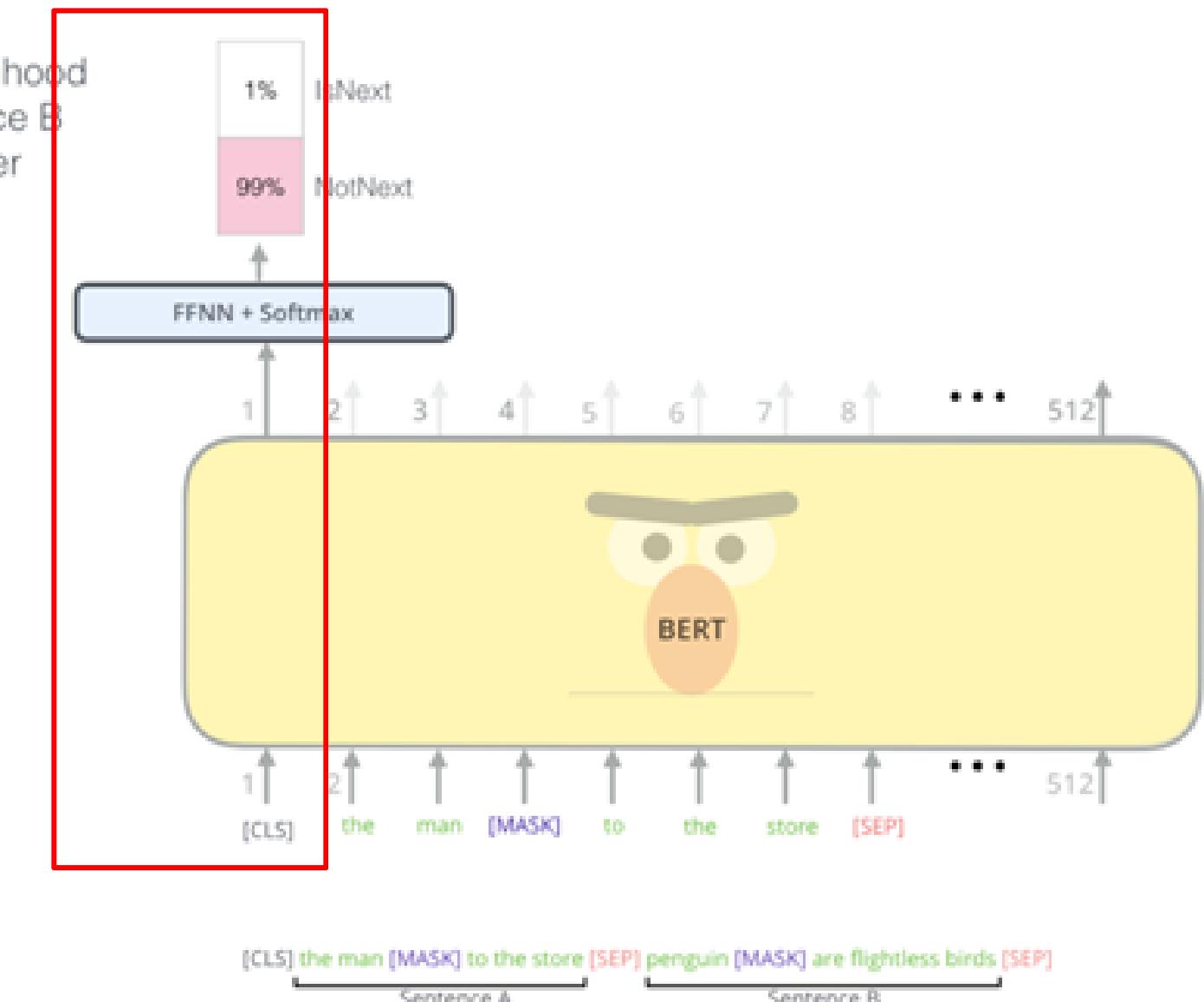


Randomly mask 15% of tokens

Mask Random Token

Class token use for Next Sentence Prediction & classification

Predict likelihood that sentence B belongs after sentence A



Tokenized Input

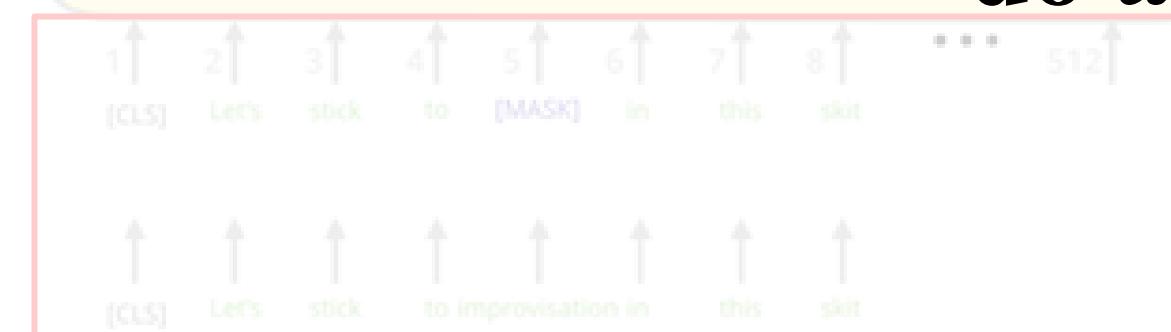
Input

Use the output of the masked word's position to predict the masked word

“MLM(Masked Language Model) and NSP(Next Sentence Prediction) task do at the same time”

Randomly mask 15% of tokens

Input



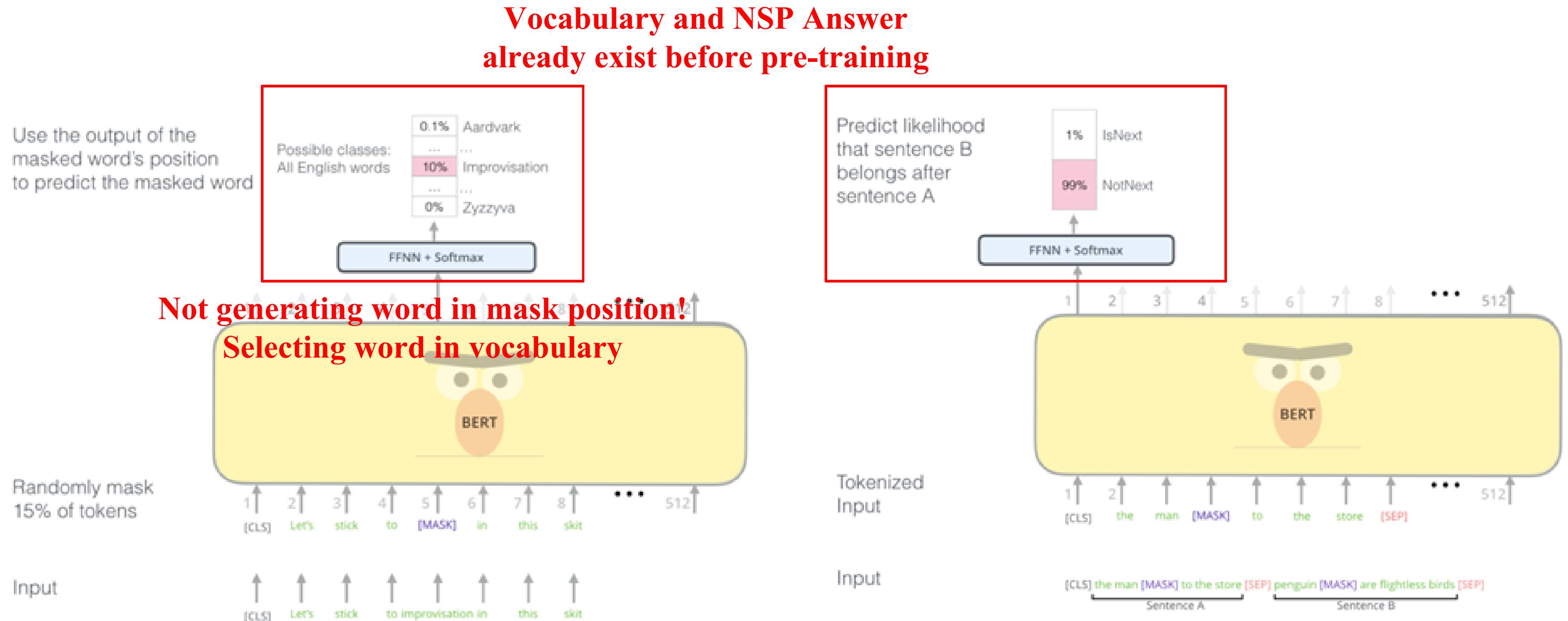
Mask Random Token

Class token use for Next Sentence Prediction & classification

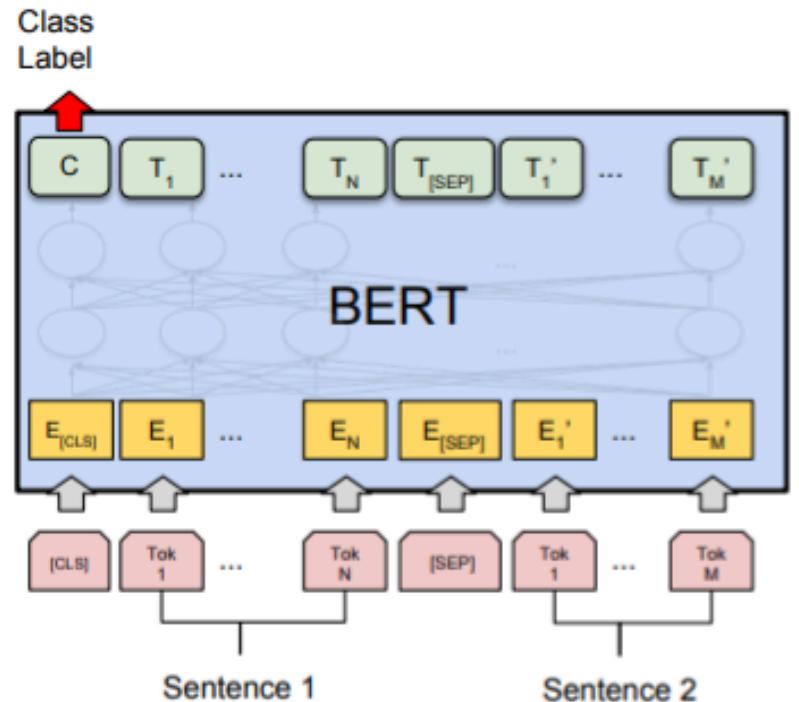
Predict likelihood that sentence B belongs after sentence A



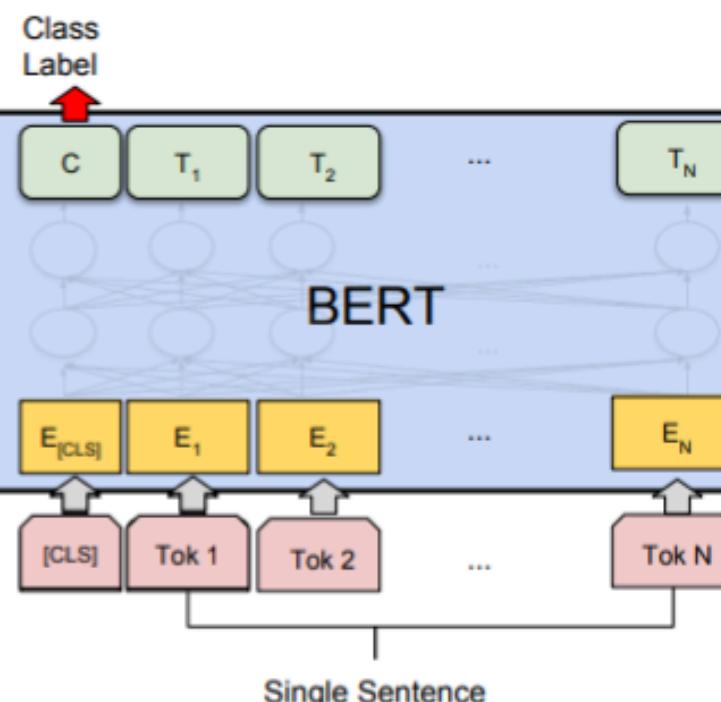
04 BERT. pre-training



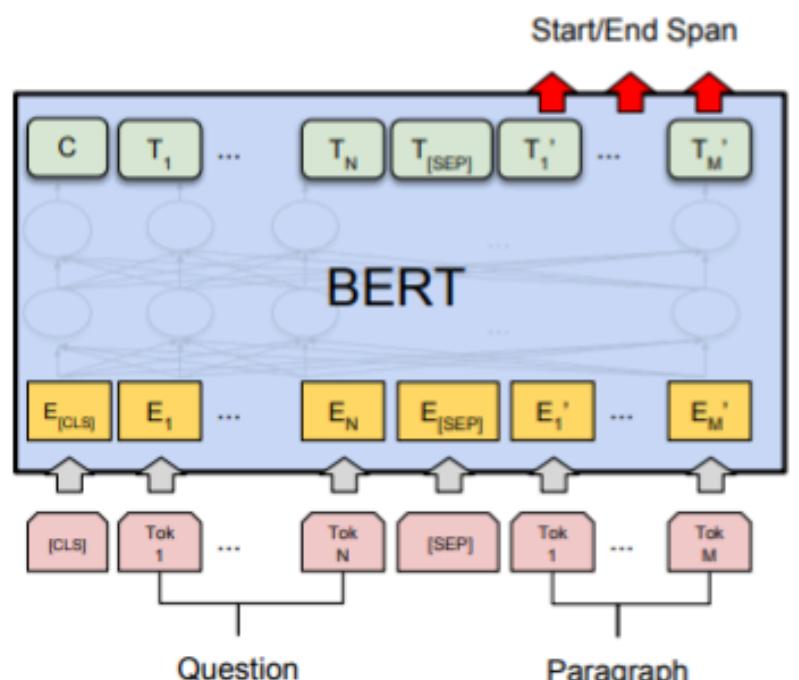
04 BERT. Fine-tuning



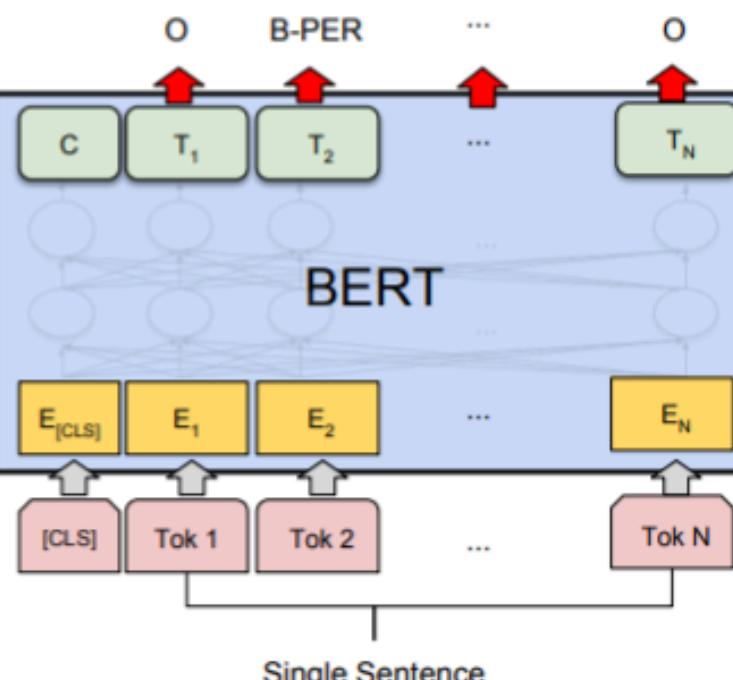
(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG



(b) Single Sentence Classification Tasks:
SST-2, CoLA



(c) Question Answering Tasks:
SQuAD v1.1

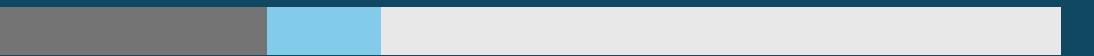


(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

1. A separate fine-tuned model is required for each task
2. In task (a), the model determines whether two sentences are semantically identical
3. In task (b), the model matches or classifies the overall properties or characteristics of an entire sentence
4. In task (c), the model is given a passage along with a question and must predict the span in the passage where the correct answer appears
5. In task (d), the model classifies the meaning or role of each token, such as whether a word is a verb, a noun, a person's name and so on.

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Thank You



2026.00.00

BrainLAB Journal Club
Department of Applied Artificial Intelligence
Jeong SangYeop